A Survey on Contrastive Self-Supervised Learning

本文详细探讨了对比自监督学习方法在计算机视觉和NLP领域的应用,包括对比学习的网络前置任务、模型架构、训练策略以及在下游任务中的表现。研究表明,对比学习在减少对标注数据的依赖、提升模型性能方面取得了显著成果,但也面临理论基础不充分、数据增强和负样本选择等挑战。
摘要由CSDN通过智能技术生成

A Survey on Contrastive Self-Supervised Learning
对比自监督学习综述

Author:Ashish Jaiswal,Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee and Fillia Makedon

机构:德克萨斯大学阿灵顿分校计算机科学与工程系,阿灵顿,美国

期刊:technologies,10.31提交,12.23接受,12.28发布;

OA

Project: Citavi-202112 传感器融合

万物皆可contrastive learning

自监督学习之所以受到欢迎,是因为它能够避免标注大规模数据集的成本。它能够采用自定义的伪标签作为监督,并将学习到的表示用于多个下游任务。具体来说,对比学习最近已经成为计算机视觉、自然语言处理(NLP)和其他领域的自我监督学习的主要组成部分。它的目的是将同一样本的增广版本嵌入到彼此接近的位置,同时试图排除来自不同样本的嵌入。这篇论文对遵循对比方法的自我监督方法进行了广泛的回顾。该工作解释了在对比学习设置中常用的借口任务,接着是迄今为止提出的不同架构。对不同的方法进行了性能比较,用于多个下游任务,如图像分类

对比式自监督学习是一种无监督学习的方法,旨在通过通过训练模型来学习数据的表示。这种方法在计算机视觉领域中得到了广泛的应用。 对比式自监督学习的核心思想是通过将数据例子与其在时间或空间上的某种变形或扭曲版本对比,来训练模型。这种对比鼓励模型捕捉到数据的关键特征,从而学习到更好的表示。 对比式自监督学习的一个常见应用是图像的自学习。通过将图像进行旋转、剪切、缩放等变形,来构建一个正样本(原始图像)和负样本(变形图像)对。然后将这些对输入到一个深度神经网络中进行训练,以学习图像表示。训练过程中,网络被要求将正样本和负样本区分开,从而学习到图像的特征。 对比式自监督学习有许多优点。首先,它不需要标注数据,使其适用于大规模的无标签数据。其次,由于数据自动生成,可以轻松地扩展到大数据集。另外,对比式自监督学习的模型可以用于其他任务的迁移学习,使得模型更通用。 然而,对比式自监督学习也存在一些挑战和限制。首先,生成变形样本的过程可能会降低数据的质量,从而降低学习效果。其次,选择合适的变形方式和参数也是一个挑战。另外,对于某些领域和任务,对比式自监督学习可能不适用或效果不佳。 总之,对比式自监督学习是一种有效的无监督学习方法,可用于数据表示学习。它在计算机视觉领域有着广泛的应用,并具有许多优点。然而,仍然需要进一步的研究和发展来克服其中的挑战和限制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HelloWorld__来都来了

来都来了 福寿双全

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值