常见医学图像处理深度学习方法与热点应用【附参考文献】

深度学习通过自动学习图像的高层特征,改善了医学图像的分析和诊断效率,减少了人为错误。深度学习模型如DBN、SAE、CNN和RNN在医学图像分析中广泛应用,包括超分辨率重建、3D图像处理、疾病早期检测等。研究者们使用这些模型实现了乳腺癌、前列腺癌的检测,以及肺结节的诊断,提高了准确性并减少了假阳性结果。
摘要由CSDN通过智能技术生成

传统的医学图像的判别、诊断过程主要依靠有经验的医生,过程的主观性易造成漏诊和错诊等情况。使用自动高效的图像分析技术改善质量控制十分必要。

深度学习是一种数据驱动的自动学习图像中隐藏的高层次特征的方法,大幅度减少了大量特征选择时主观因素的干扰;深度学习模型应用非线性层结构,能够建立复杂的模型[]。

这两个重要的特点使深度学习方法在医学图像中的应用日益广泛。深度学习方法从原始特征出发,自动学习高级特征组合,从一系列图像中提取抽象特征,整个过程是端到端的,由输入层输入信息,进入隐层,再到输出层输出信息,保证最终输出最优解[]。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HelloWorld__来都来了

来都来了 福寿双全

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值