传统的医学图像的判别、诊断过程主要依靠有经验的医生,过程的主观性易造成漏诊和错诊等情况。使用自动高效的图像分析技术改善质量控制十分必要。
深度学习是一种数据驱动的自动学习图像中隐藏的高层次特征的方法,大幅度减少了大量特征选择时主观因素的干扰;深度学习模型应用非线性层结构,能够建立复杂的模型[]。
这两个重要的特点使深度学习方法在医学图像中的应用日益广泛。深度学习方法从原始特征出发,自动学习高级特征组合,从一系列图像中提取抽象特征,整个过程是端到端的,由输入层输入信息,进入隐层,再到输出层输出信息,保证最终输出最优解[]。