白板推导:降维

 

降维

           防止过拟合的其中一种方法就是降维,解决的问题就是维度灾难。

           从几何角度理解维度灾难(数据稀疏化)

PCA

一个中心:原始特征空间的重构,将特征从相关变成无关。

两个基本点:最大化投影误差和最小重构距离。(两者结果相同,解分别是前n个(主成分)和后n个特征向量)。

1.找到主成分

2.中心化再投影得到新坐标

PCA求解

数据:HX=U\Sigma V^{T} ; SVD分解,H:中心矩阵;H^{T}=H^{n}=H

方差矩阵:S_{p*p} = X^{T}HX = X^{T}H^{T}HX=V\Sigma U^{T}U\Sigma V^{T}=V\Sigma ^{2}V^{T}

数据矩阵:T_{N*N}=HXX^{T}H=U\Sigma ^{2}U^{T}

使用S求解:得到方向(主成分),然后HXV得到坐标(PCA主成分分析)

使用T求解:直接可以得到坐标(主坐标分析PCoA)

在特征维度很大时可以使用T求解。

P-PCA

z:隐变量,符合高斯分布

x:原数据,x= wz+μ+ε

p-pca:求解p(z|x),学习参数:w,μ,\sigma ^{2}(EM求解)

x,z之间的关系如下图:

视频地址:https://www.bilibili.com/video/av32709936/

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值