【白板推导系列笔记】降维-PCA-最大投影方差&最小重构代价

PCA(主成分分析)是通过正交变换将原始特征空间重构,寻找投影方差最大和重构代价最小的方向。本文介绍了PCA的基本原理,包括最大化投影方差的拉格朗日乘子法求解特征向量,以及最小化重构代价的优化问题,揭示两者实际上是一致的。
摘要由CSDN通过智能技术生成

作者:shuhuai008
链接:【机器学习】【白板推导系列】【合集 1~33】_哔哩哔哩_bilibili

PCA的核心就是对原始特征空间的重构(将一组可能线性相关的变量,通过正交变换变换成一组线性无关的变量)
两个基本的要求是最大投影方差(即找到的投影方向对于数据集投影方差最大),最小重构代价(即降维所得到的新数据与原数据相比,信息损失最小)

X = ( x 1 x 2 ⋯ x N ) N × p T = ( x 1 T x 2 T ⋮ x N T ) = ( x 11 x 12 ⋯ x 1 p x 21 x 22 ⋯ x 2 p ⋮ ⋮ ⋮ x N 1 x N 2 ⋯ x N P ) N × p x i ∈ R p , i = 1 , 2 , ⋯   , N 记 1 N = ( 1 1 ⋮ 1 ) N × 1 x ˉ = 1 N X T 1 N , S = 1 N X T H X \begin{gathered} X=\begin{pmatrix} x_{1} & x_{2} & \cdots & x_{N} \end{pmatrix}^{T}_{N \times p}=\begin{pmatrix} x_{1}^{T} \\ x_{2}^{T} \\ \vdots \\ x_{N}^{T} \end{pmatrix}=\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{NP} \end{pmatrix}_{N \times p}\\ x_{i}\in \mathbb{R}^{p},i=1,2,\cdots ,N\\ 记1_{N}=\begin{pmatrix}1 \\ 1 \\ \vdots \\ 1\end{pmatrix}_{N \times 1}\\ \bar{x}=\frac{1}{N}X^{T}1_{N},S=\frac{1}{N}X^{T}\mathbb{H}X \end{gathered} X=(x1x2xN)N×pT= x1Tx2TxNT = x11x21xN1x12x22xN2x1px2pxNP N×pxiRp,i=1,2,,N1N= 111

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值