在给定的区间 [m,n] 内,是否存在素数 p、q、r(p<q<r),使得 pq+r、qr+p、rp+q 均是素数?
输入格式:
输入给出区间的两个端点 0<m<n≤1000,其间以空格分隔。
输出格式:
在一行中输出满足条件的素数三元组的个数。
输入样例:
1 35
输出样例:
10
样例解读
满足条件的 10 组解为:
2, 3, 5
2, 3, 7
2, 3, 13
2, 3, 17
2, 5, 7
2, 5, 13
2, 5, 19
2, 5, 31
2, 7, 23
2, 13, 17
代码:
线性筛
#include <iostream>
#include <unordered_map>
using namespace std;
const int N = 1e5 + 10;
int m, n;
int primes[N], cnt, res;
bool st[N];
unordered_map<int , bool> h;
void get_primes(int n) {
for (int i = 2; i <= n; i ++ ) {
if (!st[i]) {
primes[cnt ++ ] = i;
h[i] = true;
}
for (int j = 0; n / primes[j] > i; j ++ ) {
st[primes[j] * i] = true;
if (i % primes[j] == 0) break;
}
}
}
bool check(int a, int b, int c) {
return h[a * b + c] && h[a + b * c] && h[a * c + b];
}
int main() {
cin >> n >> m;
get_primes(N - 1);
int start = 0;
while (primes[start] < n, start ++ );
for (int i = start; primes[i] <= m; i ++ ) {
for (int j = i + 1; primes[j] <= m; j++ ) {
for (int k = j + 1; primes[k] <= m; k ++ ) {
if (check(primes[i], primes[j], primes[k])) {
res ++ ;
}
}
}
}
cout << res;
}
朴素法:
#include <iostream>
#include <unordered_map>
using namespace std;
const int N = 1e6 + 10;
int m, n;
int primes[N], cnt, res;
bool st[N];
unordered_map<int , bool> h; // 用于判断当前的数是不是质数
// 刷选指数
void get_primes(int n) {
for (int i = 2; i <= n; i ++ ) {
int flag = 1;
for (int j = 0; j < cnt && primes[j] <= i / primes[j]; j ++ ) {
if (i % primes[j] == 0) {flag = 0; break;}
}
if (flag) primes[cnt ++ ] = i, h[i] = true;
}
}
// 判断当前的rqp是否满足
bool check(int a, int b, int c) {
return h[a * b + c] && h[a + b * c] && h[a * c + b];
}
int main() {
cin >> n >> m;
get_primes(N - 1);
int start = 0;
while (primes[start] < n) start ++ ;
for (int i = start; primes[i] <= m; i ++ ) {
for (int j = i + 1; primes[j] <= m; j++ ) {
for (int k = j + 1; primes[k] <= m; k ++ ) {
if (check(primes[i], primes[j], primes[k])) {
res ++ ;
}
}
}
}
cout << res;
}
整活:
#include<iostream>
#define f(_,n)for(int _=n;p[_]<=m;_++)
const int N = 1e6 + 10;
int m,n,p[N],c,r,t[N],f,s;
int main(){std::cin>>n>>m;for(int i=2;i<N;i++){f=1;
for(int j=0;j<c&&p[j]<=i/p[j];j++)if(i%p[j]==0){f=0;break;}
if(f)p[c++]=i,t[i]=true;}while(p[s]<n)s++;
f(i,s)f(j,i+1)f(k,j+1)if(t[p[i]*p[j]+p[k]]&&t[p[i]+p[j]*p[k]]&&t[p[i]*p[k]+p[j]])r++;
std::cout<<r;}