L4-118 均是素数(C++,多种方法)

在给定的区间 [m,n] 内,是否存在素数 p、q、r(p<q<r),使得 pq+r、qr+p、rp+q 均是素数?

输入格式:

输入给出区间的两个端点 0<m<n≤1000,其间以空格分隔。

输出格式:

在一行中输出满足条件的素数三元组的个数。

输入样例:

1 35

输出样例:

10

样例解读

满足条件的 10 组解为:

2, 3, 5
2, 3, 7
2, 3, 13
2, 3, 17
2, 5, 7
2, 5, 13
2, 5, 19
2, 5, 31
2, 7, 23
2, 13, 17

代码:

线性筛
#include <iostream>
#include <unordered_map>

using namespace std;

const int N = 1e5 + 10;

int m, n;
int primes[N], cnt, res;
bool st[N];
unordered_map<int , bool> h;

void get_primes(int n) {
    for (int i = 2; i <= n; i ++ ) {
        if (!st[i]) {
            primes[cnt ++ ] = i;
            h[i] = true;
        }
        for (int j = 0; n / primes[j] > i; j ++ ) {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    } 
}

bool check(int a, int b, int c) {
    return h[a * b + c] && h[a + b * c] && h[a * c + b];
}

int main() {
    cin >> n >> m;
    get_primes(N - 1);
    int start = 0;
    while (primes[start] < n, start ++ ); 
    for (int i = start; primes[i] <= m; i ++ ) {
        for (int j = i + 1; primes[j] <= m; j++ ) {
            for (int k = j + 1; primes[k] <= m; k ++ ) {
                if (check(primes[i], primes[j], primes[k])) {
                    res ++ ;
                }
            }
        }
    }
    cout << res;
}
 朴素法:
#include <iostream>
#include <unordered_map>

using namespace std;

const int N = 1e6 + 10;

int m, n;
int primes[N], cnt, res;
bool st[N];
unordered_map<int , bool> h; // 用于判断当前的数是不是质数

// 刷选指数
void get_primes(int n) {
    for (int i = 2; i <= n; i ++ ) {
        int flag = 1;
        for (int j = 0; j < cnt && primes[j] <= i / primes[j]; j ++ ) {
            if (i % primes[j] == 0) {flag = 0; break;}
        }
        if (flag) primes[cnt ++ ] = i, h[i] = true;
    }
}
// 判断当前的rqp是否满足
bool check(int a, int b, int c) {
    return h[a * b + c] && h[a + b * c] && h[a * c + b];
}

int main() {
    cin >> n >> m;
    get_primes(N - 1);
    int start = 0;
    while (primes[start] < n) start ++ ; 
    for (int i = start; primes[i] <= m; i ++ ) {
        for (int j = i + 1; primes[j] <= m; j++ ) {
            for (int k = j + 1; primes[k] <= m; k ++ ) {
                if (check(primes[i], primes[j], primes[k])) {
                    res ++ ;
                }
            }
        }
    }
    cout << res;
}
整活:
#include<iostream>
#define f(_,n)for(int _=n;p[_]<=m;_++)
const int N = 1e6 + 10;
int m,n,p[N],c,r,t[N],f,s;
int main(){std::cin>>n>>m;for(int i=2;i<N;i++){f=1;
for(int j=0;j<c&&p[j]<=i/p[j];j++)if(i%p[j]==0){f=0;break;}
if(f)p[c++]=i,t[i]=true;}while(p[s]<n)s++; 
f(i,s)f(j,i+1)f(k,j+1)if(t[p[i]*p[j]+p[k]]&&t[p[i]+p[j]*p[k]]&&t[p[i]*p[k]+p[j]])r++;
std::cout<<r;}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值