假设 f ( x ) f(x) f(x) 是一个任意的函数,证明它可以表示为奇函数和偶函数的和。
1. 构造奇偶分解式
我们首先将函数 f ( x ) f(x) f(x) 分解为一个奇函数和一个偶函数的组合。定义:
偶函数部分 h ( x ) h(x) h(x) 为: h ( x ) = f ( x ) + f ( − x ) 2 h(x) = \frac{f(x) + f(-x)}{2} h(x)=2f(x)+f(−x)
奇函数部分
g
(
x
)
g(x)
g(x) 为:
g
(
x
)
=
f
(
x
)
−
f
(
−
x
)
2
g(x) = \frac{f(x) - f(-x)}{2}
g(x)=2f(x)−f(−x)
2. 验证偶函数部分 h ( x ) h(x) h(x) 的性质
要验证 h ( x ) h(x) h(x) 是偶函数,需要检查是否满足 h ( − x ) = h ( x ) h(-x) = h(x) h(−x)=h(x):
h ( − x ) = f ( − x ) + f ( x ) 2 = h ( x ) h(-x) = \frac{f(-x) + f(x)}{2} = h(x) h(−x)=2f(−x)+f(x)=h(x)
因此, h ( x ) h(x) h(x) 是偶函数。
3. 验证奇函数部分 g ( x ) g(x) g(x) 的性质
要验证 g ( x ) g(x) g(x) 是奇函数,需要检查是否满足 g ( − x ) = − g ( x ) g(-x) = -g(x) g(−x)=−g(x):
g ( − x ) = f ( − x ) − f ( x ) 2 = − f ( x ) − f ( − x ) 2 = − g ( x ) g(-x) = \frac{f(-x) - f(x)}{2} = -\frac{f(x) - f(-x)}{2} = -g(x) g(−x)=2f(−x)−f(x)=−2f(x)−f(−x)=−g(x)
因此, g ( x ) g(x) g(x) 是奇函数。
4. 重构原函数
最后,我们可以重构原函数 f ( x ) f(x) f(x) 为奇函数部分 g ( x ) g(x) g(x) 和偶函数部分 h ( x ) h(x) h(x) 的和:
f ( x ) = g ( x ) + h ( x ) f(x) = g(x) + h(x) f(x)=g(x)+h(x)
证毕:
任意函数 f ( x ) f(x) f(x) 都可以表示为一个奇函数和一个偶函数的和。