证明:一个函数是由奇函数和偶函数组成

假设 f ( x ) f(x) f(x) 是一个任意的函数,证明它可以表示为奇函数和偶函数的和。

1. 构造奇偶分解式

我们首先将函数 f ( x ) f(x) f(x) 分解为一个奇函数和一个偶函数的组合。定义:

偶函数部分 h ( x ) h(x) h(x) 为: h ( x ) = f ( x ) + f ( − x ) 2 h(x) = \frac{f(x) + f(-x)}{2} h(x)=2f(x)+f(x)

奇函数部分 g ( x ) g(x) g(x) 为:
g ( x ) = f ( x ) − f ( − x ) 2 g(x) = \frac{f(x) - f(-x)}{2} g(x)=2f(x)f(x)

2. 验证偶函数部分 h ( x ) h(x) h(x) 的性质

要验证 h ( x ) h(x) h(x) 是偶函数,需要检查是否满足 h ( − x ) = h ( x ) h(-x) = h(x) h(x)=h(x)

h ( − x ) = f ( − x ) + f ( x ) 2 = h ( x ) h(-x) = \frac{f(-x) + f(x)}{2} = h(x) h(x)=2f(x)+f(x)=h(x)

因此, h ( x ) h(x) h(x) 是偶函数。

3. 验证奇函数部分 g ( x ) g(x) g(x) 的性质

要验证 g ( x ) g(x) g(x) 是奇函数,需要检查是否满足 g ( − x ) = − g ( x ) g(-x) = -g(x) g(x)=g(x)

g ( − x ) = f ( − x ) − f ( x ) 2 = − f ( x ) − f ( − x ) 2 = − g ( x ) g(-x) = \frac{f(-x) - f(x)}{2} = -\frac{f(x) - f(-x)}{2} = -g(x) g(x)=2f(x)f(x)=2f(x)f(x)=g(x)

因此, g ( x ) g(x) g(x) 是奇函数。

4. 重构原函数

最后,我们可以重构原函数 f ( x ) f(x) f(x) 为奇函数部分 g ( x ) g(x) g(x) 和偶函数部分 h ( x ) h(x) h(x) 的和:

f ( x ) = g ( x ) + h ( x ) f(x) = g(x) + h(x) f(x)=g(x)+h(x)

证毕:

任意函数 f ( x ) f(x) f(x) 都可以表示为一个奇函数和一个偶函数的和。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值