在Mac M1上面安装Tensorflow和Tensorflow Metal

本文介绍了如何在搭载M1芯片的Mac上安装TensorFlow和TensorFlow Metal。首先确保已安装conda,接着分步骤安装TensorFlow的Apple依赖、TensorFlow-macOS,并提供了使用清华源加速下载的建议。最后,成功安装后即可在M1 MacBook Pro上进行模型训练。
摘要由CSDN通过智能技术生成

首先,我们默认已经安装了conda。第一步就是安装TensorFlow在Apple上面的依赖。

conda install -c apple tensorflow-deps -y

第二步是安装TensorFlow-macOS。

python -m pip install tensorflow-macos

 如果你网速不够可以使用清华源。

python -m pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow-macos

第三步是安装TensorFlow-Metal。

python -m pip install tensorflow-metal

 如果你网速不够可以使用清华源。

python -m pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow-metal

 

这样子TensorFlow就成功安装在了m1芯片的MacBook Pro上了。

然后就可以开心地在m1芯片上训练模型了。

 

### 如何在 Mac M1安装 TensorFlow #### 使用 Pip 安装 TensorFlow TensorFlow Metal 插件 对于希望快速设置 TensorFlow 的用户来说,通过 `pip` 工具来安装是一个简便的选择。这通常涉及两个主要命令: - 首先,利用 Python 自带的包管理工具 `pip` 来安装适用于 macOSTensorFlow 版本。 ```bash python -m pip install tensorflow-macos ``` 这条指令会下载并配置好 TensorFlow 库以便于后续开发工作[^1]。 接着为了使 TensorFlow 能够充分利用 Apple Silicon 架构下的图形处理单元 (GPU),还需要额外安装名为 `tensorflow-metal` 的插件,该插件可以显著提升模型训练速度以及数据推理效率。 ```bash python -m pip install tensorflow-metal ``` 完成上述两步之后便可以在本地环境中顺利调用 TensorFlow API 进行机器学习项目开发了[^2]。 #### 利用 Conda 创建特定版本的 Python 环境并安装 TensorFlow 另一种推荐的方式则是借助 Anaconda 发行版中的 conda 命令行工具创建独立的工作空间,在这里可以选择更早些时候发布的稳定版本如 TensorFlow 2.0.0 及其兼容性的 Python 解释器版本(例如 Python 3.7),从而减少潜在冲突的可能性。 具体操作如下所示: - 新建一个基于 Python 3.7.13 的虚拟环境命名为 `tf_py37`. ```bash conda create -n tf_py37 python=3.7.13 ``` 激活刚刚建立好的新环境: ```bash conda activate tf_py37 ``` 最后按照前述方法继续执行针对此环境下 TensorFlow安装过程即可[^3]。 无论采用哪种方式都建议保持操作系统及相关依赖项处于最新状态以获得最佳体验支持服务。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值