Windows DeepSeek API调用基础教程-Python

DeepSeek API 调用🚀


       在最近DeepSeek大火之后,在各个媒体上都能看到对这个大模型的报道,这个使用MoE的架构的大模型,在使用体验上,确实让我眼前一亮,我自己平时也是已经在用着GPT-o1,对比下来发现在我的日常使用中,无论是代码还是一些论文方面的翻译或者编写目录方面回答的内容对比o1的回复都是更符合我心里想要的,除了服务器一直被攻击导致经常卡住之外,回答的质量上我认为是非常OK的,趁着个人寒假的尾声也是打算研究一下
       本来这篇文章是打算把文档里的内容都玩一遍,奈何DeepSeek服务器实在是访问成功率太低了,干运行没反应,我之前研究通义千问和GPT的时候都还比较顺利,应该是被攻击的原因吧,所以这篇就先算是一个简单的基础内容吧,等服务器缓过来了再补充。

  • 多轮对话、流式输出(已写完)
  • 推理模型、对话前缀续写、FIM补全、Function Calling 等(还没写)

DeepSeek本地部署使用 Python 调用 Ollama 部署到本地的 DeepSeek 模型 Windows 全流程记录笔记

之前写过的其他模型API调用文章
GPTAPI 调用:ChatGPT4 API-Key初探-本地调用API进行多轮对话方和流式输出
通义千问API 调用 :调用阿里通义千问大语言模型API-小白新手教程-python


1.API Key 申请


       想要申请API Key 就要进入DeepSeek 的 API 开放平台 ,打开DeepSeek API 官网 https://www.deepseek.com/ 点击的右上角链接进入API开放平台。

在这里插入图片描述
之后点击左侧的菜单栏中的 API Keys 选项。

在这里插入图片描述
跳转进入如下界面,点击创建API Key。
在这里插入图片描述
在输入框中先输入自定义的一个 API Key 的名称然后点击创建。

在这里插入图片描述
       然后就会得到一个 API Key ,点击复制粘贴到别的地方备用(我直接粘到了微信文件传输助手对话框里)然后点击关闭,需要注意的是,API Key 生成之后是不能再从开发平台完整查看的所以要保存好,这也是行业惯例了。

在这里插入图片描述

2.API Key 充值


这里就接上一步点击关闭之后的页面继续操作了,点击左侧菜单栏中的充值。
在这里插入图片描述
然后如果第一次使用的话,需要去进行实名认证,而且这个证件类型只开放中国大陆二代居民身份证,也就是外国人用不了哈哈哈。
在这里插入图片描述
点击去认证之后给出如下弹窗,输入姓名和身份证号,点击弹窗底部文字开头的确认框进行知晓操作确认,然后点击右下角的提交认证。

在这里插入图片描述
点击提交确认了之后,出现二级弹窗提示个人认证可以转为企业认证,但是企业认证不能转为个人认证,然后点击提交。

在这里插入图片描述
之后回到充值界面,页面上方会有一个认证成功的小弹窗出现,然后很快就消失了。
在这里插入图片描述
然后这里的话我选择用微信充值,金额选一个默认的十块钱,然后点击去支付。

在这里插入图片描述
在这里插入图片描述

扫码充值成功之后会提示充值成功查看交易记录,可以点击确定去看一下,不想看就直接叉掉。

在这里插入图片描述
点击确定之后会跳转进入到账单页面,在这个页面中可以查看订单编号和交易记录,还能开发票。

在这里插入图片描述

3.API Key 调用


调用方式我们直接跟着接口文档的流程来,接口文档网址为:https://api-docs.deepseek.com/zh-cn/

在这里插入图片描述

然后在当前页面下滑可以找到调用对话API的 Hello world 代码,这里我们先去配置一下环境。

在这里插入图片描述

3.1 环境conda配置并安装openai库(有基础可跳过)

       这里我使用 Anaconda 新建一个python 环境,python版本选择官网目前的最新的稳定版本3.11,打开Anaconda Prompt 输入下面的命令,新建一个名为deepseek的pyhon版本为3.11的虚拟环境。

conda create --name deepseek python=3.11

在这里插入图片描述
在安装完成后输入下面的命令激活环境。

conda activate deepseek

在这里插入图片描述

安装 openai 库,在命令行中输入下下方安装命令,如果嫌慢的话就自己配置一下清华源,我网速还行就不弄了。

pip install openai

在这里插入图片描述

打开pycharm自己配置一下解释器,这里如果不会的话,可以找会的同学帮助一下,这里就不展开了。

在这里插入图片描述

3.2 单轮对话非流式输出例程


       官网给出的代码如下,在运行时候记得把代码中"<DeepSeek API Key>"部分双引号中的内容 替换为自己的API-Key替换完之后形如"sk-xxxxxxxxxxx"。之后运行代码即可。

# 导入OpenAI库中的OpenAI类
from openai import OpenAI

# 创建OpenAI客户端实例
# - api_key参数:用于身份验证的API密钥(需替换为实际密钥)
# - base_url参数:指定DeepSeek API的接入地址
client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")

# 创建聊天补全请求
response = client.chat.completions.create(
    # 指定使用的模型为deepseek-chat
    model="deepseek-chat",
    
    # 定义对话消息列表
    messages=[
        # 系统角色消息:设置AI助手的基本行为准则
        {
   "role": "system", "content": "You are a helpful assistant"
### DeepSeek 本地部署 GUI Ollama 教程 #### 简介 在之前的介绍中,已经探讨了基于命令行的 DeepSeek 本地部署方法[^1]。为了提高用户体验和便捷性,当前的内容聚焦于如何利用图形用户界面(GUI)来调用 Ollama API 并实现完整的对话功能。 #### 构建环境准备 构建支持 GUI 的 DeepSeek 部署方案前,确保已安装必要的依赖项以及配置好 Python 开发环境。对于 GUI 应用程序开发而言,Tkinter 是一个简单易用的选择,在大多数标准发行版中默认包含此库。 ```python import tkinter as tk from tkinter import simpledialog, messagebox ``` #### 创建主窗口 初始化 Tkinter 主循环并设置应用程序的基础框架: ```python root = tk.Tk() root.title("DeepSeek Chat Interface") # 设置窗口大小 root.geometry('800x600') ``` #### 设计聊天区域布局 定义用于显示消息记录的文字框组件与输入新消息条目的文本域: ```python chat_log = tk.Text(root, wrap='word', state='disabled') entry_field = tk.Entry(root, width=80) # 将两者放置到界面上 chat_log.pack(pady=(20, 5), padx=20, fill=tk.BOTH, expand=True) entry_field.pack(ipady=5, pady=(5, 20)) ``` #### 实现发送按钮逻辑 当点击“发送”按钮时触发事件处理函数 `send_message` 来获取用户输入并将之提交给服务器端口进行预测分析: ```python def send_message(event=None): user_input = entry_field.get().strip() if not user_input: return # 清空输入框内容 entry_field.delete(0, 'end') try: response_text = call_ollama_api(user_input) # 假设这是用来请求API的方法 append_chat(f"You: {user_input}\n", "blue") append_chat(f"AI Response: {response_text}\n\n", "green") except Exception as e: messagebox.showerror("Error Occurred!", str(e)) # 绑定回车键作为快捷方式 root.bind('<Return>', send_message) send_button = tk.Button(root, text="Send", command=send_message) send_button.pack(side=tk.RIGHT, anchor='s', padx=20, ipadx=10, ipady=5) ``` #### 添加辅助工具函数 编写一些帮助性的内部函数以便更好地管理 UI 更新过程中的细节工作: ```python def append_chat(message, color='black'): chat_log.config(state='normal') # 解锁编辑权限 chat_log.insert(tk.END, message, ('styled', )) chat_log.tag_config('styled', foreground=color) chat_log.yview_scroll(1,'pages') # 自动滚动到底部查看最新回复 chat_log.config(state='disabled') # 锁定防止意外修改 ``` #### 启动应用主循环 最后一步就是启动整个应用程序进入等待状态直到接收到关闭信号为止: ```python if __name__ == '__main__': root.mainloop() ``` 上述代码片段展示了创建一个简单的 GUI 聊天客户端的过程,该客户端能够连接至本地运行的 Ollama API 接口完成交互式会话体验。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩浩的科研笔记

这我为您答疑发送资源的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值