Python 调用 Ollama 部署到本地的 DeepSeek 模型🚀
前两天写了 DeepSeek API 的调用方法,这两天老师找到我让我给师弟师妹们讲一下在日常科研工作中如何使用 DeepSeek ,然后今天有有个硕士的好同学,找到我让我出一个本地部署 DeepSeek 的教程,我想着赶早不如赶巧,那既然都赶到一起了就研究下,我首先是去了 DeepSeek 开源的官方文档,研究一下是否有官方的教程,然后发现其教程要求部署模型必须得在 Linux 系统,然后就搜了搜其他资料,发现可以用 Ollama 进行部署,之后我又看了一下各个公众号和博客部署实现的效果,基本都是到命令行输出结果之后结束,我就想到这的话似乎好像还是不能进行二次应用,然后我就搜到了 Ollama 有专门的 Python 工具包,正好这篇文章就着重写一个如何使用 Ollama 的 Python 工具包这部分。
相关文章:Windows DeepSeek API调用基础教程-Python
文章目录
1. Ollama 安装
Ollama是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计
Ollama 官方网站:https://ollama.com/
首先进入官网,然后点击 Download
点击进去之后下载 Windows 系统的安装包,这里需要稍微提一嘴,如果不用TZ的话下载会非常慢。
之后点击可执行文件进行安装。
安装成果之后电脑桌面右夏角弹出了一个开始提出窗,尝试截图但是没截到,点击之后以管理员身份进入到的 Powershell 命令窗界面。
安装之后在桌面的搜索框里搜索能看见已经安装好的应用,我是 Window 10 系统。
2. 在Powershell 内安装 DeepSeek 并进行推理
首先是去获得安装 DeepSeek 模型的命令,回到官网页面,点击上方的 Models。
进入如下页面,点击 deepseek-r1
然后在左侧下拉框内选择一个模型,这里为了方便演示,就选个1.5b的下载推理快些,然后点击右侧的命令复制,将安装命令复制。
打开 PowerShell 把命令粘贴进去。
ollama run deepseek-r1:1.5b