使用 Python 调用 Ollama 部署到本地的 DeepSeek 模型 Windows 全流程记录笔记

Python 调用 Ollama 部署到本地的 DeepSeek 模型🚀

       前两天写了 DeepSeek API 的调用方法,这两天老师找到我让我给师弟师妹们讲一下在日常科研工作中如何使用 DeepSeek ,然后今天有有个硕士的好同学,找到我让我出一个本地部署 DeepSeek 的教程,我想着赶早不如赶巧,那既然都赶到一起了就研究下,我首先是去了 DeepSeek 开源的官方文档,研究一下是否有官方的教程,然后发现其教程要求部署模型必须得在 Linux 系统,然后就搜了搜其他资料,发现可以用 Ollama 进行部署,之后我又看了一下各个公众号和博客部署实现的效果,基本都是到命令行输出结果之后结束,我就想到这的话似乎好像还是不能进行二次应用,然后我就搜到了 Ollama 有专门的 Python 工具包,正好这篇文章就着重写一个如何使用 Ollama 的 Python 工具包这部分。


相关文章:Windows DeepSeek API调用基础教程-Python


1. Ollama 安装


‌Ollama‌是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计

Ollama 官方网站:https://ollama.com/
首先进入官网,然后点击 Download

在这里插入图片描述

点击进去之后下载 Windows 系统的安装包,这里需要稍微提一嘴,如果不用TZ的话下载会非常慢。

在这里插入图片描述
之后点击可执行文件进行安装。
在这里插入图片描述
在这里插入图片描述
安装成果之后电脑桌面右夏角弹出了一个开始提出窗,尝试截图但是没截到,点击之后以管理员身份进入到的 Powershell 命令窗界面。
在这里插入图片描述
安装之后在桌面的搜索框里搜索能看见已经安装好的应用,我是 Window 10 系统。

在这里插入图片描述

2. 在Powershell 内安装 DeepSeek 并进行推理


首先是去获得安装 DeepSeek 模型的命令,回到官网页面,点击上方的 Models。

在这里插入图片描述
进入如下页面,点击 deepseek-r1

在这里插入图片描述

然后在左侧下拉框内选择一个模型,这里为了方便演示,就选个1.5b的下载推理快些,然后点击右侧的命令复制,将安装命令复制。

在这里插入图片描述
打开 PowerShell 把命令粘贴进去。

ollama run deepseek-r1:1.5b

### 如何在低配置 Windows 笔记本电脑上成功部署 DeepSeek 对于低配置的 Windows 笔记本电脑,选择合适的 DeepSeek 模型参数至关重要。考虑到硬件资源有限,建议选用较小规模的模型,如 1.5B 参数量的版本[^2]。 #### 安装前准备 确保笔记本电脑满足最低系统要求,并预留足够的磁盘空间用于存储模型文件。默认情况下,DeepSeek 模型会被保存至 C 盘;若需更改此路径,可在 Ollama 的配置文件中调整相应设置。 #### 下载与安装过程 前往 deepseek 官网获取最新的安装包以及详细的部署指南[^3]。按照官方文档指示完成环境搭建工作,包括但限于 Python 解释器及其依赖库的安装。 #### 测试验证环节 为了检验部署成果的有效性,可以通过命令行工具启动服务端程序,并利用简单的 API 请求来调用模型接口执行推理任务。此外,还可以考虑借助支持 Ollama 协议的第三方聊天应用程序(例如 ChatWise),实现更加直观便捷的人机对话体验。 ```bash # 启动 DeepSeek 服务器实例 python -m deepseek.server --model-path ./path/to/model/ # 使用 curl 命令发送 HTTP POST 请求给 RESTful API 接口 curl -XPOST http://localhost:8080/predict \ -H "Content-Type: application/json" \ -d '{"input": ["你好世界"]}' ``` #### 性能优化措施 针对可能存在的性能瓶颈问题,可采取如下策略加以缓解: - **降低批处理大小**:减少每次输入的数据条目数量; - **启用混合精度计算**:允许 GPU 利用 FP16 数据格式加速运算速度; - **裁剪必要的网络层结构**:移除影响最终输出质量的部分组件。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩浩的科研笔记

这我为您答疑发送资源的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值