pytorch 多卡训练--DataParallel

用pytorch进行多GPU训练,只需要学会把单卡训练的代码稍微改一下即可。不

  1. 模型用DataParallel包装一下:
device_ids = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] # 10卡机
model = torch.nn.DataParallel(model, device_ids=device_ids) # 指定要用到的设备
model = model.cuda(device=device_ids[0]) # 模型加载到设备0
  1. 数据也指定设备:
X_train, y_train = X_train.cuda(device=device_ids[0]), y_train.cuda(device=device_ids[0])

这里只需要用device_ids[0]定义一个样式就好,不需要逐卡指定设备。但没这一步会报错。

  1. 最后,来看一个完整demo,有注释的地方就是与单卡训练不一样的地方:
import torch
from torchvision import datasets, transforms
import torchvision
from tqdm import tqdm
 
device_ids = [0, 1, 2, 3, ] # 可用GPU
BATCH_SIZE = 64
 
transform = transforms.Compose([transforms.ToTensor()])
data_train = datasets.MNIST(root = "./data/",
                            transform=transform,
                            train=True,
                            download=True)
data_test = datasets.MNIST(root="./data/",
                           transform=transform,
                           train=False)
 
data_loader_train = torch.utils.data.DataLoader(dataset=data_train,
                                                # 单卡batch size * 卡数
                                                batch_size=BATCH_SIZE * len(device_ids),
                                                shuffle=True,
                                                num_workers=2)
 
data_loader_test = torch.utils.data.DataLoader(dataset=data_test,
                                               batch_size=BATCH_SIZE * len(device_ids),
                                               shuffle=True,
                                               num_workers=2)
 
 
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1 = torch.nn.Sequential(
        torch.nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1),
        torch.nn.ReLU(),
        torch.nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
        torch.nn.ReLU(),
        torch.nn.MaxPool2d(stride=2, kernel_size=2),
    )
        self.dense = torch.nn.Sequential(
            torch.nn.Linear(14 * 14 * 128, 1024),
            torch.nn.ReLU(),
            torch.nn.Dropout(p=0.5),
            torch.nn.Linear(1024, 10)
    )
    def forward(self, x):
        x = self.conv1(x)
        x = x.view(-1, 14 * 14 * 128)
        x = self.dense(x)
        return x
 
 
model = Model()


# 指定要用到的设备

model = torch.nn.DataParallel(model, device_ids=device_ids)

# 模型加载到设备0


model = model.cuda(device=device_ids[0])
 
cost = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())
from time import sleep
n_epochs = 50
for epoch in range(n_epochs):
    running_loss = 0.0
    running_correct = 0
    print("Epoch {}/{}".format(epoch, n_epochs))
    print("-"*10)
    for data in tqdm(data_loader_train):
        X_train, y_train = data
        # 指定设备0
        X_train, y_train = X_train.cuda(device=device_ids[0]), y_train.cuda(device=device_ids[0])
        outputs = model(X_train)
        _,pred = torch.max(outputs.data, 1)
        optimizer.zero_grad()
        loss = cost(outputs, y_train)
 
        loss.backward()
        optimizer.step()
        running_loss += loss.data.item()
        running_correct += torch.sum(pred == y_train.data)
    testing_correct = 0
    for data in data_loader_test:
        X_test, y_test = data
        # 指定设备1
        X_test, y_test = X_test.cuda(device=device_ids[0]), y_test.cuda(device=device_ids[0])
        outputs = model(X_test)
        _, pred = torch.max(outputs.data, 1)
        testing_correct += torch.sum(pred == y_test.data)
    print("Loss is:{:.4f}, Train Accuracy is:{:.4f}%, Test Accuracy is:{:.4f}".format(torch.true_divide(running_loss, len(data_train)),
                                                                                      torch.true_divide(100*running_correct, len(data_train)),
                                                                                      torch.true_divide(100*testing_correct, len(data_test))))
torch.save(model.state_dict(), "model_parameter.pkl")

通过上面程序改造的方法,便可以把单卡训练改造成了多卡训练。

  1. 模型保存
    使用nn.DataParallel包装后的模型参数的关键字会比没用nn.DataParallel包装的模型参数的关键字前面多一个“module.”,可以看看前面的错误,missing key 和 unexpected key的差别就在那个“module.”上。还有一种情况就是missing key 是module.features.0.weight,但unexpected key是 features.module.0.weight,就是module和feature的位置反过来了。
def save_checkpoint(model, optimizer, step, checkpoint_dir, epoch):

    checkpoint_path = join(
        checkpoint_dir, "checkpoint_step{:09d}.pth".format(global_step))
    optimizer_state = optimizer.state_dict() if hparams.save_optimizer_state else None
    torch.save({
        "state_dict": model.model.state_dict(),#DataParallel保存模型会在key前面增加model,去掉方便单卡模型导入
        "optimizer": optimizer_state,
        "global_step": step,
        "global_epoch": epoch,
    }, checkpoint_path)
    print("Saved checkpoint:", checkpoint_path)
def _load(checkpoint_path):
    if use_cuda:
        checkpoint = torch.load(checkpoint_path)
    else:
        checkpoint = torch.load(checkpoint_path,
                                map_location=lambda storage, loc: storage)
    return checkpoint

def load_checkpoint(path, model, optimizer, reset_optimizer=False):
    global global_step
    global global_epoch

    print("Load checkpoint from: {}".format(path))
    checkpoint = _load(path)
    from collections import OrderedDict
    new_state_dict = OrderedDict()
    state_dict =checkpoint["state_dict"] #手动模型参数关键字添加“module.”
    for k, v in state_dict.items():
            k = 'module.'+k
            new_state_dict[k]=v
    model.load_state_dict(new_state_dict)
    if not reset_optimizer:
        optimizer_state = checkpoint["optimizer"]
        if optimizer_state is not None:
            print("Load optimizer state from {}".format(path))
            optimizer.load_state_dict(checkpoint["optimizer"])
    global_step = checkpoint["global_step"]
    global_epoch = checkpoint["global_epoch"]

    return model
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值