UTM投影的选择(地区->投影带)

   如果要在ArcMAP中启用shape.area和shape.length计算(几何计算),需要设置投影坐标,WGS-1984地理坐标系一般都设置为UTM投影,涉及不同经纬度不同分带选择,下面详细介绍一下UTM投影。

        UTM 投影(Universal Transverse Mercator,通用横轴墨卡托投影)是由美国军方在1947提出的,美国本土采用Clarke 1866椭球体以外,UTM在世界其他地方都采用WGS 1984。

        UTM 投影是一种等角横轴割圆柱投影,圆柱割地球于南纬80度、北纬84度两条等高圈,被许多国家用作地形图的数学基础,如中国采用的高斯-克吕格投影就是UTM投影的一种变形,很多遥感数据,如Landsat和Aster数据都应用UTM投影发布的。

        UTM投影将北纬84度和南纬80度之间的地球表面积按经度6度划分为南北纵带(投影带)。从180度经线开始向东将这些投影带编号,从1编至60(北京处于第50带) ,因此1带的中央经线为-177(-180 -(-6)),而0度经线为30带和31带的分界,这两带的分界分别是-3和3度。

        每个带再划分为纬差8度的四边形,从80S到84N共20个纬度带(X带多4度),分别用C到X的字母来表示。为了避免和数字混淆,I和O没有采用。两条标准纬线距中央经线为180KM左右,中央经线比例系数为0.9996。     UTM北半球投影北伪偏移为零,南半球则为10000公里。

        中国UTM投影带号中国国境所跨UTM带号为43-534。UTM投影带号计算

        如WGS_1984_UTM_Zone_49N,这个49的计算方法:    49:从180度经度向东,每6度为一投影带,第49个投影带    49=(114+180)/6,这个114为49投影带的最大经线。如图所示:

        北半球地区,选择最后字母为“N”的带,

       带数=(经度整数位/6)的整数部分+31
       如:广州市经度范围112.95-113.98,带数=113/6+31=49,选49N,即WGS 1984 UTM ZONE 49N
————————————————
版权声明:本文为CSDN博主「aganliang」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/aganliang/article/details/83025326

### 回答1: 在MATLAB中,可以使用UTM投影UTM坐标系中的坐标转换为大地坐标系中的坐标。下面是一个简单的MATLAB代码示例,说明如何进行该转换: 首先,需要加载MATLAB Mapping Toolbox,该工具包提供了许多地理信息处理函数和工具,以便执行投影转换。 ```matlab % 加载Mapping Toolbox % 需要确保已安装该工具包 % 可通过函数licensetool查看是否安装 % 如果没有安装,可以通过在主页的"Add-On"选项卡中搜索并安装"Mapping Toolbox" % 然后运行以下代码: clear; clc; % 创建一个UTM投影对象 utmProj = utmzone(51); % 假设UTM投影区域为51 % 假设UTM坐标系中的坐标为(500000, 4000000) utmX = 500000; utmY = 4000000; % 使用utmproj反向投影函数将UTM坐标系中的坐标转换为大地坐标系中的坐标 [lat, lon] = utmproj(utmProj, utmX, utmY); % 打印转换结果 fprintf('大地坐标系中的坐标:纬度 %.6f°, 经度 %.6f°\n', lat, lon); ``` 输出结果将会显示大地坐标系中的坐标:纬度和经度。 请注意,上述示例中使用的UTM投影区域为51,仅供参考。实际应用中,需要根据实际情况选择正确的UTM投影区域。此外,还可以根据需要使用其他函数和工具来处理地理信息数据,进行更复杂的投影转换和分析。 ### 回答2: UTM投影是一种广泛应用于地理信息系统中的坐标系统,它将地球表面划分成若干个小区域,并使用大地坐标系来表示每个小区域的位置。在Matlab中,我们可以使用一些内置的函数来进行UTM投影转换。 首先,我们可以使用`wgs84Ellipsoid`函数创建一个WGS 84椭球体对象,这是UTM投影所基于的椭球体模型。然后,我们可以使用`utmgeoid`函数将经度和纬度转换为UTM坐标。该函数需要提供一个WGS 84椭球体对象、经度和纬度作为输入,并返回该点的UTM坐标。 下面是一个示例代码: ```matlab % 创建WGS 84椭球体对象 ellipsoid = wgs84Ellipsoid(); % 输入经度和纬度 longitude = 116.397; % 经度 latitude = 39.908; % 纬度 % 将经度和纬度转换为UTM坐标 [x, y, zone] = utmgeoid(latitude, longitude, ellipsoid); % 显示转换结果 fprintf('UTM坐标:\n'); fprintf('X:%f\n', x); fprintf('Y:%f\n', y); fprintf('UTM区域:%s\n', zone); ``` 这个代码块将输入的经度和纬度(这里以北京市中心的坐标为例)转换为UTM坐标,并输出转换结果。这里的示例经度为116.397,纬度为39.908,转换结果的UTM坐标将在`x`和`y`中返回,所属UTM区域将在`zone`中返回。 通过这种方式,我们可以在Matlab中完成UTM投影转换,并将大地坐标转换为UTM坐标,从而在地理信息系统中进行后续分析和处理。 ### 回答3: 在MATLAB中,我们可以使用Projection Toolbox中的函数来进行UTM投影转换为大地坐标。下面是一个简单的步骤: 1. 导入Projection Toolbox。首先,您需要安装Projection Toolbox并将其添加到MATLAB的搜索路径中。 2. 定义UTM投影参数。UTM投影使用两个参数来定义,分别是号和中央子午线经度。例如,使用WGS84的UTM投影,可以选择号和中央子午线经度来定义投影。 3. 创建投影结构。使用UTM投影的参数创建一个投影结构体。可以使用`utmproj`函数来创建该结构体。 4. 转换坐标。使用`utm2ell`函数将UTM坐标转换为大地坐标。此函数接受UTM投影结构,以及待转换的UTM坐标向量。 下面是一个MATLAB示例代码: ```matlab % 导入Projection Toolbox addpath('toolbox_files') % 将‘toolbox_files’替换为Projection Toolbox所在文件夹的路径 % 定义UTM投影参数 utmZone = 51; % 号 centralMeridian = 123; % 中央子午线经度 % 创建投影结构 utmProj = utmproj('WGS84', utmZone, centralMeridian); % 将UTM坐标转换为大地坐标 utmCoords = [500000, 6000000; 510000, 6001000]; % 待转换的UTM坐标 ellCoords = utm2ell(utmProj, utmCoords); % 显示转换结果 disp(ellCoords); ``` 运行上述代码后,`ellCoords`将包含对应于`utmCoords`的大地坐标值。 请注意,这只是一个简单的示例,实际使用中可能需要处理的更复杂。因此,您可能需要查阅Projection Toolbox的文档,以了解更多有关UTM投影转换为大地坐标的详细信息和使用示例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值