学习目标:
了解深度学习在内窥镜图像上的研究。
学习内容:
深度学习在内窥镜图像研究:
比赛推荐,
https://endovis.grand-challenge.org/
https://github.com/JunMa11/MICCAI-OpenSourcePapers
工业界:
将深度学习用于处理内窥镜图像的公司:
https://www.magentiq.com/copy-of-products
内窥镜实时AI图像诊断的: https://www.ai-ms.com/en/
学术界:
1- 2021- Deep neural network approaches for detecting gastric polyps in endoscopic images. - Durak - Yildiz Technical University , Turkey
Ideal: 建立一种基于深度学习的胃息肉检测,主要工作是对比了YOLOV4, CenterNet, EfficientNet, Cross Stage ResNetx50- spp, YOLOV3, SSD, FRCNN, 在2195 张内窥镜图像上的检测效果, 表明YOLOV4网络在息肉检测方面有显著的潜在适用性,有效用于胃肠道CAD系统。
2- 2021- Automatic detection of colorectal neoplasia in wireless colon capsule endoscopic images using deep CNN. - Atsuo Yamada - The University of Tokyo
出发点: 使用深度学习网络检测结直肠肿瘤, 结直肠肿瘤的图像通过结肠胶囊内镜获得。
3.- 2021- Accuracy of artificial intelligence-assisted detection of esophageal cancer and neoplasms on endoscopic images: A systematic review and meta-anasis - 首都医科大学
对以往AI 在内窥镜图像上检测食道癌的检测工作进行分析, 采用二元混合效应回归方法评估AI的效果,使用Meta 回归分析方法探讨异质性来源。
结论: AI提高早期食道癌检测准确率。
4.- 2021-simultaneous Recognition of Atrophic gastritis and intestinal metaplasia on white light Endoscopic images based on CNN: a multicenter study.-Lin Ne - 首都医科大学,北京
出发点: 研究了CNN 在识别萎缩性胃炎AG, 胃肠上皮化生GIM上的准确性。
5-2020-基于改进U-net网络的内窥镜图像烟雾净化算法-林金朝-重庆邮电大学
出发点:
1.为了保留更多图像细节,在U-NET编码器部分加入经过-Laplace变换的图像。
2. 提升网络效果,在U-NET 网络解码器部分加入CBAM 注意力机制模块。
3.通过合成的烟雾图像,送入改进的U-NET网络训练,得到净化图像。
6 - 2018 - Application of AI using CNN for diagnosis of early gastric cancer based on magnifying endoscopy with narrow-band imaging. - Juntendo University School of Medicine, AI Medical Service Inc.
Ideal: 使用SSD,目标检测网络进行内窥镜图像胃癌的检测;
工业落地: 基于SSD的 CNN 胃癌检测系统,在较短时间内诊断大量内窥镜图像的胃癌检测,减轻内窥镜师的工作量, 已经被上述 AI Medical Service 公司科技成果转化;
深度学习在内窥镜图像上的研究,目前该领域的研究国内外普遍多于AI+心肺音信号,相关落地的工业产品较多,国内公司较多且发展快,竞争较为明显。