在上一篇我们分析了Metadata的更新机制,其中涉及到一个问题,就是Sender如何跟服务器通信,也就是网络层。同很多Java项目一样,Kafka client的网络层也是用的Java NIO,然后在上面做了一层封装。
下面首先看一下,在Sender和服务器之间的部分:
可以看到,Kafka client基于Java NIO封装了一个网络层,这个网络层最上层的接口是KakfaClient。其层次关系如下:
在本篇中,先详细对最底层的Java NIO进行讲述。
NIO的4大组件
Buffer与Channel
Channel: 在通常的Java网络编程中,我们知道有一对Socket/ServerSocket对象,每1个socket对象表示一个connection,ServerSocket用于服务器监听新的连接。
在NIO中,与之相对应的一对是SocketChannel/ServerSocketChannel。
下图展示了SocketChannel/ServerSocketChannel的类继承层次
public interface Channel extends Closeable {
public boolean isOpen();
public void close() throws IOException;
}
public interface ReadableByteChannel extends Channel {
public int read(ByteBuffer dst) throws IOException;
}
public interface WritableByteChannel extends Channel {
public int write(ByteBuffer src) throws IOException;
}
从代码可以看出,一个Channel最基本的操作就是read/write,并且其传进去的必须是ByteBuffer类型,而不是普通的内存buffer。
Buffer:在NIO中,也有1套围绕Buffer的类继承层次,在此就不详述了。只需知道Buffer就是用来封装channel发送/接收的数据。
Selector
Selector的主要目的是网络事件的 loop 循环,通过调用selector.poll,不断轮询每个Channel上读写事件
SelectionKey
SelectionKey用来记录一个Channel上的事件集合,每个Channel对应一个SelectionKey。
SelectionKey也是Selector和Channel之间的关联,通过SelectionKey可以取到对应的Selector和Channel。
关于这4大组件的协作、配合,下面来详细讲述。
4种网络IO模型
epoll与IOCP
在《Unix环境高级编程》中介绍了以下4种IO模型(实际不止4种,但常用的就这4种):
阻塞IO: read/write的时候,阻塞调用
非阻塞IO: read/write,没有数据,立马返回,轮询
IO复用:read/write一次都只能监听一个socket,但对于服务器来讲,有成千上完个socket连接,如何用一个函数,可以监听所有的socket上面的读写事件呢?这就是IO复用模型,对应linux上面,就是select/poll/epoll3种技术。
异步IO:linux上没有,windows上对应的是IOCP。
Reactor模式 vs. Preactor模式
相信很多人都听说过网络IO的2种设计模式,关于这2种模式的具体阐述,可以自行google之。
在此处,只想对这2种模式做一个“最通俗的解释“:
Reactor模式:主动模式,所谓主动,是指应用程序不断去轮询,问操作系统,IO是否就绪。Linux下的select/poll/epooll就属于主动模式,需要应用程序中有个循环,一直去poll。
在这种模式下,实际的IO操作还是应用程序做的。
Proactor模式:被动模式,你把read/write全部交给操作系统,实际的IO操作由操作系统完成,完成之后,再callback你的应用程序。Windows下的IOCP就属于这种模式,再比如C++ Boost中的Asio库,就是典型的Proactor模式。
epoll的编程模型--3个阶段
在Linux平台上,Java NIO就是基于epoll来实现的。所有基于epoll的框架,都有3个阶段:
注册事件(connect,accept,read,write), 轮询IO是否就绪,执行实际IO操作。
下面的代码展示了在li