计数原理基础知识

1. 排列

2. 组合

3. 二项式

3.1 二项式展开

( a + b ) 2 (a + b)^2 (a+b)2等于什么?答案根据初中数学知识很容易得到: a 2 + 2 a b + b 2 a^2 + 2ab + b^2 a2+2ab+b2
那么,如何通过排列组合知识从理论上抽象出公式呢?

  1. ( a + b ) 2 = ( a + b ) ( a + b ) (a + b) ^ 2 = (a + b)(a + b) (a+b)2=(a+b)(a+b)
  2. 第一个 ( a + b ) (a + b) (a+b)的取值有2种方案,分别是:a,b
    第二个 ( a + b ) (a + b) (a+b)的取值也有2种方案,分别是:a,b
  3. 从第一个 ( a + b ) (a + b) (a+b)分别取a,b后,整个式子等于 a ( a + b ) + b ( a + b ) a(a + b) + b(a + b) a(a+b)+b(a+b)
    再从第二个 ( a + b ) (a + b) (a+b)分别取a,b后,整个式子等于 a × a + a × b + b × a + b × b a \times a + a \times b + b \times a + b \times b a×a+a×b+b×a+b×b
  4. 展开后共有4项相加,因为第一个 ( a + b ) (a + b) (a+b)有2项,要从2项里取值组合: C 2 1 C_2^1 C21,第二个 ( a + b ) (a + b) (a+b)也有2项,同理组合数也是 C 2 1 C_2^1 C21
  5. 所以,最终组合数是: C 2 1 C 2 1 = 4 C_2^1 C_2^1 = 4 C21C21=4

以b作为基准,k是每一次组合时取到b的数量,那么2-k就是a的数量,得到结果中每一项的公式: a 2 − k ⋅ b k a^{2-k} \cdot b^k a2kbk

k取值组合数每项值
k = 0 C 2 0 = 1 C_2^0 = 1 C20=1 a 2 ⋅ b 0 a^2\cdot b^0 a2b0
k = 1 C 2 1 = 2 C_2^1 = 2 C21=2 a 1 ⋅ b 1 a^1\cdot b^1 a1b1
k = 2 C 2 2 = 1 C_2^2 = 1 C22=1 a 0 ⋅ b 2 a ^0 \cdot b^2 a0b2

组合数就是二项式展开后,每一项的系数,最终结果: a 2 + 2 a b + b 2 a^2 + 2ab + b^2 a2+2ab+b2

按照上述规律,计算 ( a + b ) 3 (a + b)^3 (a+b)3
C 3 0 ⋅ a 3 − 0 b 0 + C 3 1 ⋅ a 3 − 1 b 1 + C 3 2 ⋅ a 3 − 2 b 2 + C 3 3 ⋅ a 3 − 3 b 3 = a 3 + 3 ⋅ a 2 b + 3 a b 2 + b 3 C_3^0 \cdot a^{3-0} b^0 + C_3^1 \cdot a^{3-1} b^1 + C_3^2 \cdot a^{3-2} b^2 + C_3^3 \cdot a^{3-3} b^3 \\= a^3 + 3 \cdot a^2b + 3 ab^2 + b^3 C30a30b0+C31a31b1+C32a32b2+C33a33b3=a3+3a2b+3ab2+b3

类推到 ( a + b ) n ⟹ C n 0 ⋅ a n b 0 + C n 1 ⋅ a n − 1 b 1 + . . . + C n k ⋅ a n − k b k + . . . + C n n ⋅ a n − n b n (a + b) ^n \\ \Longrightarrow C_n^0 \cdot a^nb^0 + C_n^1 \cdot a^{n-1}b1 + ... + C_n^k \cdot a^{n-k}b^k + ... + C_n^n \cdot a^{n-n}b^n (a+b)nCn0anb0+Cn1an1b1+...+Cnkankbk+...+Cnnannbn
其中, C n k ⋅ a n − k b k C_n^k \cdot a^{n-k}b^k Cnkankbk是二项式展开的通项,

注意从0开始,所以这是第k+1项
二项式展开通项(k+1项): C n k ⋅ a n − k b k C_n^k \cdot a^{n-k}b^k Cnkankbk

3.2 二项式系数的性质

  1. 组合数对称性
    C n m = C n n − m C_n^m = C_n^{n-m} Cnm=Cnnm
  2. 增减性:
    m < n + 1 2 \large m < \frac {\large n+1} {\large 2} m<2n+1时, C n m C_n^m Cnm随m增大而增大
    m > n + 1 2 \large m > \frac {\large n+1} {\large 2} m>2n+1时, C n m C_n^m Cnm随m增大而减小
  3. 最大值:
    n为偶数时, C n n 2 C_n^\frac n 2 Cn2n取得最大值
    n为奇数时: C n n − 1 2 C_n^\frac {n-1} 2 Cn2n1 C n n + 1 2 C_n^\frac {n+1} 2 Cn2n+1相等,同时取得最大值

4. [随机变量] 条件概率

同一个试验中,2个事件A与B同时发生,& A与B相互独立,那么A,B同时发生的概率: P ( A B ) = P ( A ) ⋅ P ( B ) P(AB) = P(A) \cdot P(B) P(AB)=P(A)P(B)
当A与B不独立时,咋办呢?条件概率

4.1 条件概率

回顾古典概型,满足条件如下:

  1. 有限基本事件
  2. 事件发生等可能
    古典概型中,基本事件A事件发生的概率:总基本事件包含的样本点分之A事件包含的样本点: P ( A ) = n ( A ) n ( Ω ) P(A) = \frac {n(A)} {n(\Omega)} P(A)=n(Ω)n(A)

例子:班级里有45人,抽签选班长

团员非团员合计
男生16925
女生14620
合计301545
  1. 抽签选到男生的概率有多大?
    符合古典概型, P ( A ) = n ( A ) n ( Ω ) = 男生事件样本点数量: 25 总样本点数量: 45 = 5 9 P(A) = \frac {n(A)} {n(\Omega)} = \frac {男生事件样本点数量:25} {总样本点数量:45} = \frac {5}{9} P(A)=n(Ω)n(A)=总样本点数量:45男生事件样本点数量:25=95
  2. 如果之选到的是团员,那么选到男生的概率多大?
    此时,A条件(团员)的样本点数量是 n ( A ) = 30 n(A) = 30 n(A)=30,A条件下B事件的样本点(团员中的男生)数量 n ( A B ) = 16 n(AB) = 16 n(AB)=16 ⟶ \longrightarrow P ( B ∣ A ) = n ( A B ) n ( A ) = 16 30 P(B|A) = \frac{n(AB)}{n(A)} = \frac {16}{30} P(BA)=n(A)n(AB)=3016

条件概率:
A事件发生的条件下 ⟶ \longrightarrow B事件发生的概率
A事件发生的概率 分之 AB事件同时发生的概率
⟹ \Longrightarrow 记为: P ( B ∣ A ) P(B|A) P(BA)
等于样本点的比值: n ( A B ) n ( A ) \frac {n(AB)}{n(A)} n(A)n(AB)

条件概率与概率乘法

  1. 根据上一节内容, P ( B ∣ A ) = n ( A B ) n ( A ) P(B|A) = \frac {n(AB)}{n(A)} P(BA)=n(A)n(AB)
  2. 分子分母同时除以 n ( Ω ) ⟶ P ( B ∣ A ) = n ( A B ) n ( Ω ) n ( A ) n ( Ω ) n(\Omega) \longrightarrow P(B|A) = \frac {\frac {n(AB)}{n(\Omega)}} {\frac{n(A)}{n(\Omega)}} n(Ω)P(BA)=n(Ω)n(A)n(Ω)n(AB)
  3. 分子部分是A,B事件同时发生的概率,分母部分是A事件发生的概率
  4. 所以: P ( B ∣ A ) = n ( A B ) n ( A ) ⟶ P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A) = \frac {n(AB)}{n(A)} \longrightarrow P(B|A) = \frac {P(AB)}{P(A)} P(BA)=n(A)n(AB)P(BA)=P(A)P(AB)

条件概率:A,B两个随机事件,且P(A)>0,A发生的条件下,B发生的概率为条件概率
在这里插入图片描述

如果A,B相互独立, P ( A B ) = P ( A ) ⋅ P ( B ) → P ( B ∣ A ) = P ( A B ) P ( A ) = P ( A ) ⋅ P ( B ) P ( A ) = P ( B ) P(AB)=P(A) \cdot P(B) \\ \rightarrow P(B|A) = \frac {P(AB)}{P(A)} = \frac {P(A) \cdot P(B)}{P(A)} = P(B) P(AB)=P(A)P(B)P(BA)=P(A)P(AB)=P(A)P(A)P(B)=P(B)
得到的结论:如果P(B|A) = P(B),且P(A)>0,那么A,B事件一定相互独立

概率乘法公式

任意事件A,B,且P(A)>0, P ( A B ) = P ( A ) ⋅ P ( B ∣ A ) P(AB) = P(A)\cdot P(B|A) P(AB)=P(A)P(BA)

当A,B互相独立时 P ( A B ) = P ( A ) ⋅ P ( B ) P(AB) = P(A)\cdot P(B) P(AB)=P(A)P(B)
当不确定A,B是否独立是,用 P ( A B ) = P ( A ) ⋅ P ( B ∣ A ) P(AB) = P(A)\cdot P(B|A) P(AB)=P(A)P(BA)

例子1:

5道题,3代数题,2几何题,每次随机抽取1道题,抽出的题目不放回

  1. 第一次抽到代数,且第二次抽到几何的概率?(积事件)
  2. 在第一次抽到代数的情况下,第二次收到几何的概率?(条件概率)
对于1. 问题可以抽象成排列问题,第一次和第二次是2个格子,分别在2个格子里放上代数,与几何。

设,A:“第一次抽到代数事件”,B:“第二次抽到几何事件”
排列的样本总数量(总排列数) n ( Ω ) = A 5 2 n(\Omega) = A_5^2 n(Ω)=A52,第一个格子里是代数的样本数量 n ( A ) = A 3 1 n(A)=A_3^1 n(A)=A31,第二个格子里是几何的样本总数量 n ( B ) = A 2 1 n(B) = A_2^1 n(B)=A21
满足要求的概率就是: P ( A B ) = n ( A B ) n ( Ω ) = A 3 1 ⋅ A 2 1 A 5 2 = 3 ⋅ 2 20 = 3 10 P(AB)= \frac {n(AB)}{n(\Omega)} = \frac {A_3^1 \cdot A_2^1}{A_5^2} = \frac{3 \cdot 2}{20} = \frac 3 {10} P(AB)=n(Ω)n(AB)=A52A31A21=2032=103

对于2. 是条件概率,在A成立的条件下,B发生的概率

P ( B ∣ A ) = P ( A B ) P ( A ) = 3 / 10 3 / 5 = 1 2 P(B|A) = \frac {P(AB)}{P(A)} = \frac {3/10}{3/5} =\frac 1 2 P(BA)=P(A)P(AB)=3/53/10=21

例子2

盒子里有3个球,2个红色1个蓝色,甲乙丙3人依次无放回各抽一个。他们抽到蓝色球的概率如何?
设,甲,乙,丙抽到蓝色球的事件分别是A,B,C
B事件发生需要A事件不发生,所以 B = A ‾ B B=\overline{A}B B=AB
C事件发生需要AB事件都不发生,所以 C = A ‾ B ‾ C C=\overline{A} \overline{B}C C=ABC
根据古典概型:
A事件发生的概率: P ( A ) = n ( 蓝色数量 ) n ( 总数量 ) = 1 / 3 P(A) = \frac {n(蓝色数量)}{n(总数量)} = 1/3 P(A)=n(总数量)n(蓝色数量)=1/3
B事件发生的概率:A事件没有发生的概率 【乘以】 A事件没有发生的条件下B事件发生的概率,因为是不放回抽取,此时B事件发生的概率是1/2。
P ( B ) = P ( A ‾ B ) = P ( A ‾ ) ⋅ P ( B ∣ A ‾ ) = 2 / 3 ⋅ 1 / 2 = 1 / 3 P(B) = P(\overline{A}B) = P(\overline A) \cdot P(B|\overline{A}) = 2/3 \cdot 1/2 = 1/3 P(B)=P(AB)=P(A)P(BA)=2/31/2=1/3
C事件发生的概率:
P ( C ) = P ( A ‾ B ‾ C ) = P ( A ‾ ) ⋅ P ( B ‾ ) ⋅ P ( C ) = 2 / 3 ⋅ 1 / 2 ⋅ 1 / 1 = 1 / 3 P(C) = P(\overline{A}\overline{B}C)=P(\overline{A})\cdot P(\overline{B}) \cdot P(C) = 2/3 \cdot 1/2 \cdot 1/1 = 1/3 P(C)=P(ABC)=P(A)P(B)P(C)=2/31/21/1=1/3

A,B,C事件发生的概率都是1/3,所以不放回抽取时,抽中概率与抽取顺序无关。

例子3

0到9这10个数里,只有一个数能让猫开心,在不超过2次的尝试中,让猫开心的概率是多少?
2中情况可以让猫开心,1. 第一次蒙对了,2.第一次没蒙对,第二次蒙对了。
,第一次尝试就蒙对了是事件 A 1 A_1 A1,第二次尝试才蒙对了是事件 A 2 A_2 A2
P ( A 1 ) = n ( 正确的数字 ) n ( 总数字 ) = 1 10 P(A_1)=\frac{n(正确的数字)}{n(总数字)}=\frac{1}{10} P(A1)=n(总数字)n(正确的数字)=101
P ( A 2 ) = P ( A 1 ‾ A 2 ) = P ( A 1 ‾ ) ⋅ P ( A 2 ∣ A 1 ‾ ) = 9 10 ⋅ 1 9 = 1 10 P(A_2)=P(\overline{A_1}A_2)=P(\overline{A_1}) \cdot P(A_2|\overline{A_1}) = \frac {9}{10} \cdot \frac{1}{9} = \frac{1}{10} P(A2)=P(A1A2)=P(A1)P(A2A1)=10991=101
所以,不超过2次蒙对的概率 P ( A ) = P ( A 1 ∪ A 2 ) = P ( A 1 ) + P ( A 2 ) = 1 10 + 1 10 = 1 5 P(A) = P(A_1 \cup A_2) = P(A_1) + P(A_2) = \frac {1}{10} + \frac{1}{10} = \frac{1}{5} P(A)=P(A1A2)=P(A1)+P(A2)=101+101=51

如果确认了这个数是奇数,那么概率又如何呢?
假设这个数是奇数的事件为B,问题就转换为:在B条件下,A的概率
P ( A ∣ B ) = P ( A 1 ∣ B ) + P ( A 2 ∣ B ) P(A|B) = P(A_1|B) + P(A_2|B) P(AB)=P(A1B)+P(A2B)
B条件是的样本空间从10缩小到5, P ( A 1 ) = 1 / 5 P(A_1) = 1/5 P(A1)=1/5 P ( A 2 ) = 4 / 5 ⋅ 1 / 4 = 1 / 5 P(A_2) = 4/5 \cdot 1/4 = 1/5 P(A2)=4/51/4=1/5
最终概率是2/5

5. 全概率

Q1:a个红球,b个蓝球,随机摸出一个,摸出的球不放回。

R 1 R_1 R1:第1次摸到红球事件
R 2 R_2 R2:第2次摸到红球事件
B 1 B_1 B1:第1次摸到蓝球事件
B 2 B_2 B2:第2次摸到蓝球事件

在这里插入图片描述

P ( R 1 ) = a a + b P(R_1) = \frac {a}{a+b} P(R1)=a+ba // 古典概型
P ( R 2 ) = P ( R 1 R 2 ) ∪ P ( B 1 R 2 ) = P ( R 1 R 2 ) + P ( B 1 R 2 ) = P ( R 1 ) ⋅ P ( R 2 ∣ R 1 ) + P ( B 1 ) ⋅ P ( R 2 ∣ B 1 ) = a a + b ⋅ a − 1 a + b − 1 + b a + b ⋅ a a + b − 1 = a ( a − 1 + b ) ( a + b ) ( a + b − 1 ) = a a + b = P ( R 1 ) P(R_2) = P(R_1R_2) \cup P(B_1R_2) \\ =P(R_1R_2) + P(B_1R_2) \\ =P(R_1)\cdot P(R_2|R_1) + P(B_1)\cdot P(R_2|B_1) \\ =\frac{a}{a+b}\cdot \frac{a-1}{a+b-1} + \frac{b}{a+b}\cdot \frac{a}{a+b-1} \\ =\frac{a(a-1+b)}{(a+b)(a+b-1)} = \frac{a}{a+b} = P(R_1) P(R2)=P(R1R2)P(B1R2)=P(R1R2)+P(B1R2)=P(R1)P(R2R1)+P(B1)P(R2B1)=a+baa+b1a1+a+bba+b1a=(a+b)(a+b1)a(a1+b)=a+ba=P(R1)
得到了结果: P ( R 1 ) = P ( R 2 ) P(R_1) = P(R_2) P(R1)=P(R2)

重要结论:在不放回的前提下,抽签中签的概率与抽签的顺序无关

全概率

整个事件的样本点数量是左边的方框,记为: Ω \Omega Ω
第一次将 Ω \Omega Ω分为2个部分(红,蓝),
第二次在红蓝条件下分别再取红色事件(右边的图)
最后,将红,蓝条件下的红色事件合并。
因为 Ω \Omega Ω只分成红,蓝两部分,所以红,蓝两部分的前提下取到的红色之和,就是 Ω \Omega Ω中,第二次红色事件的总数。

在这里插入图片描述

  1. 如果整体事件 Ω \Omega Ω被分割成n个小事件 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An
  2. 在每一个小事件都发生的条件下事件B发生的概率 A 1 B 1 , A 2 B 2 , . . . , A n B n A_1B_1,A_2B_2, ...,A_nB_n A1B1A2B2,...,AnBn
  3. 那么事件B在 Ω \Omega Ω下发生的概率 P ( B ) = P ( B 1 ∣ A 1 ) + P ( B 2 ∣ A 2 ) + . . . + P ( B n ∣ A n ) P(B) = P(B_1|A_1) +P(B_2|A_2) + ... + P(B_n|A_n) P(B)=P(B1A1)+P(B2A2)+...+P(BnAn)
    在这里插入图片描述
Q2. 3台机床生产同一型号零件

第一台产量占总数的25%,次品率6%
第二台产量占总数的30%,次品率5%
第三台产量占总数的45%,次品率5%

  1. 任取一个零件,计算是次品的概率。

解答:
B事件:任取一个零件为次品
A i A_i Ai事件: 零件是第 i i i台机床生产的, ( i = 1 , 2 , 3 ), Ω = A 1 ∪ A 2 ∪ A 3 , A 1 , A 2 , A 3 (i = 1, 2, 3),\Omega=A_1 \cup A_2 \cup A_3,A_1, A_2, A_3 i=1,2,3),Ω=A1A2A3A1,A2,A3两两互斥
P ( A 1 ) = 0.25 , P ( A 2 ) = 0.3 , P ( A 3 ) = 0.45 P(A_1) = 0.25,P(A_2) = 0.3,P(A_3) = 0.45 P(A1)=0.25P(A2)=0.3P(A3)=0.45
P ( B ∣ A 1 ) = 0.06 , P ( B ∣ A 2 ) = 0.05 , P ( B ∣ A 3 ) = 0.05 P(B|A_1) = 0.06,P(B|A_2) = 0.05,P(B|A_3) = 0.05 P(BA1)=0.06P(BA2)=0.05P(BA3)=0.05
P ( B ) = P ( A 1 ) ⋅ P ( B ∣ A 1 ) + P ( A 2 ) ⋅ P ( B ∣ A 2 ) + P ( A 3 ) ⋅ P ( B ∣ A 3 ) = 0.0525 P(B) = P(A_1)\cdot P(B|A_1) + P(A_2)\cdot P(B|A_2) + P(A_3)\cdot P(B|A_3) = 0.0525 P(B)=P(A1)P(BA1)+P(A2)P(BA2)+P(A3)P(BA3)=0.0525
第一台机床的概率 x 第一台机床的次品率 + 第二台机床的概率 x 第二台机床的次品率 + 第三台机床的概率 x 第三台机床的次品率

  1. 如果抽到了一个次品,计算它是第 i ( i = 1 , 2 , 3 ) i(i = 1, 2, 3) i(i=1,2,3)台车床加工的概率。
    B事件:抽取到了次品事件
    A i A_i Ai事件: 第几台车床加工的事件
    是第一台机床加工的概率:B事件发生的条件下A事件发生的概率: P ( A 1 ∣ B ) P(A_1|B) P(A1B)

P ( A 1 ∣ B ) = P ( A 1 B ) P ( B ) P(A_1|B) = \frac {P(A_1B)}{P(B)} P(A1B)=P(B)P(A1B) // 分子是A_1与B两个交事件发生的概率

= P ( A 1 ) ⋅ P ( B ∣ A 1 ) P ( B ) \hspace{4em} = \frac {P(A_1)\cdot P(B|A_1)}{P(B)} =P(B)P(A1)P(BA1) // 根据概率乘法公式,分子:A_1发生的概率 * A_1条件下B发生的概率

= 0.25 ∗ 0.06 0.0525 = 2 7 \hspace{4em} = \frac {0.25 * 0.06}{0.0525} = \frac 27 =0.05250.250.06=72

同理,可以求出来自第二台,第三台机床的概率。

上面例子中的概率可以分为2种,1. 先验概率,2.后验概率

  1. 先验概率:试验开始时就已经确定的概率。每台机床的加工占比 P ( A i ) P(A_i) P(Ai)
  2. 后验概率:试验之后计算得到的概率。抽到次品时,次品是哪个机床加工的概率 P ( A i ∣ B ) P(A_i|B) P(AiB)

6. 贝叶斯公式

有: A 1 , A 2 , . . . , A n A_1, A_2, ..., A_n A1,A2,...,An互斥, A 1 ∪ A 2 ∪ . . . ∪ A n = Ω , P ( A i ) ≠ 0 A_1 \cup A_2 \cup ... \cup A_n = \Omega,P(A_i) \neq 0 A1A2...An=ΩP(Ai)=0
对: ∀ B ∈ Ω , P ( B ) ≠ 0 \forall B \in \Omega,P(B) \neq 0 BΩP(B)=0
都有: P ( A i ∣ B ) = P ( A i ) P ( B ∣ A i ) P ( B ) P(A_i|B) = \frac {P(A_i)P(B|A_i)}{P(B)} P(AiB)=P(B)P(Ai)P(BAi)

= P ( A i ) P ( B ∣ A i ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) \hspace{6em} = \frac{P(A_i)P(B|A_i)}{\sum_{i=1}^nP(A_i)P(B|A_i)} =i=1nP(Ai)P(BAi)P(Ai)P(BAi) // 分母是全概率公式

回顾概率乘法: P ( A i ∩ B ) = P ( A i ) ⋅ P ( B ∣ A i ) P(A_i \cap B) = P(A_i) \cdot P(B|A_i) P(AiB)=P(Ai)P(BAi)

Q3. 发送数字信号0,1

发送0,接收到0的概率是0.9,接收到1的概率是0.1
发送1,接收到0的概率是0.05,接收到1的概率是0.95
0,1等可能发送

  1. 接受0与1的概率(古典概型,全概率公式)
    A A A:发送0, B B B:接收0
    A ‾ \overline A A:发送1, B ‾ \overline B B:接收1
    接收0的概率:发送0接收0 + 发送1接收0
    P ( B ) = P ( A ) ⋅ P ( B ∣ A ) + P ( A ‾ ) ⋅ P ( B ∣ A ‾ ) P(B) = P(A) \cdot P(B|A) +P(\overline A)\cdot P(B|\overline A) P(B)=P(A)P(BA)+P(A)P(BA)
    = 0.5 × 0.9 + 0.5 × 0.05 \hspace{3em} =0.5 \times 0.9 + 0.5 \times 0.05 =0.5×0.9+0.5×0.05
    = 0.475 \hspace{3em} =0.475 =0.475
    接收1的概率:同理:0.525

  2. 接收到0时,发送为1的概率(条件概率,贝叶斯公式)
    要求的是:当 B B B发生时, A ‾ \overline A A发生的概率
    P ( A ‾ ∣ B ) = P ( A ‾ ∩ B ) P ( B ) P(\overline A|B) = \frac{P(\overline A \cap B)}{P(B)} P(AB)=P(B)P(AB)
    = P ( A ‾ ) P ( B ∣ A ‾ ) P ( B ) \hspace{4em} = \frac {P(\overline A)P( B|\overline A)}{P(B)} =P(B)P(A)P(BA)
    = 0.5 × 0.05 0.475 \hspace{4em}= \frac {0.5 \times 0.05}{0.475} =0.4750.5×0.05
    = 1 19 \hspace{4em}= \frac {1}{19} =191

7. 离散性随机变量及其分布列

随机抽一个产品,抽到次品:用0表示,抽到正品:用1表示
这种做法是用实数表示样本空间里的样本点,将数字对应到样本空间的样本点上
离散型随机变量的目的:实数集合来表示样本空间
在这里插入图片描述
随机抽取: { 抽到次品 → 0 抽到正品 → 1 ⟹ X = { 0 → 抽到次品 1 → 抽到正品 随机抽取:\begin{cases} 抽到次品 \rightarrow 0 \\ 抽到正品 \rightarrow 1 \end{cases} \hspace{2em}\Longrightarrow \hspace{2em} X = \begin{cases} 0 \rightarrow 抽到次品 \\ 1 \rightarrow 抽到正品 \end{cases} 随机抽取:{抽到次品0抽到正品1X={0抽到次品1抽到正品
把样本点的随机性转成实数的随机性,所以, X X X叫做随机变量

Q1:从100个产品里(超过3个是次品)随机抽取3个产品,X表示三个产品中次品的个数。
  • 0:表示次品,1:表示正品
  • 抽取次品的样本空间:
    3个次品:000
    2个次品:100,010,001
    1个次品:110, 011, 101
    0个次品:111
  • Ω = { 111 , 110 , 101 , 100 , 011 , 010 , 001 , 000 } \Omega = \begin{Bmatrix}111, 110, 101, 100, 011, 010, 001, 000\end{Bmatrix} Ω={111,110,101,100,011,010,001,000}
  • X = { 0 , 1 , 2 , 3 } X = \begin{Bmatrix}0, 1, 2, 3\end{Bmatrix} X={0,1,2,3}
  • Ω \Omega Ω中的每一个 ω \omega ω都有唯一一个 X ( ω ) X(\omega) X(ω)与之对应,
  • 此时,样本点的随机性就传递到了X的随机性,此时X就叫随机变量
  • 当X的取值是有限的,并且可以一一列举,此时X叫做离散随机变量
  • 一般用大写X,Y,Z表示随机变量,小写x,y,z表示随机变量的取值
Q2. 掷骰子,X:掷出的点数

掷出点数的等可能性: P ( X = i ) = 1 6 , i = 1 , 2 , 3 , 4 , 5 , 6 P(X=i) = \frac 16, i=1, 2, 3, 4, 5, 6 P(X=i)=61,i=1,2,3,4,5,6

X123456
P 1 6 \frac16 61 1 6 \frac16 61 1 6 \frac16 61 1 6 \frac16 61 1 6 \frac16 61 1 6 \frac16 61
概率的分布列

离散性随机变量 X = x 1 , x 2 , . . . X X = x_1, x_2, ... X X=x1,x2,...X取每一个值 X i X_i Xi的概率: P ( X = x i ) = P i , i = 1 , 2 , 3 , . . . , n P(X = x_i) = P_i, i=1, 2, 3, ..., n P(X=xi)=Pii=1,2,3,...,n
通俗的说,就是将 x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn每一项的概率都列出来,就叫 X X X的概率分布列
举个例子,掷骰子1-6的概率分布列就是 { 1 6 , 1 6 , 1 6 , 1 6 , 1 6 , 1 6 } \begin{Bmatrix}\frac16, \frac16,\frac16,\frac16,\frac16,\frac16\end{Bmatrix} {61,61,61,61,61,61}

概率分布列可以直观展示为,概率分布表,概率分布图等

X x 1 x_1 x1 x 2 x_2 x2 x n x_n xn
P P 1 P_1 P1 P 2 P_2 P2 P n P_n Pn
  1. i i i的取值从 1 1 1 n n n P i ≥ 0 , i = 1 , 2 , . . . , n P_i \geq 0,i = 1, 2, ..., n Pi0i=1,2,...,n
  2. 所有取值的概率和为必然事件: ∑ i = 1 n P i = 1 \sum_{i=1}^nP_i = 1 i=1nPi=1
Q2的问题
  1. 掷出的点数不大于2的概率是多少?
    问题就是要求 ⟹ { X ≤ 2 } \Longrightarrow \begin{Bmatrix}X \leq 2\end{Bmatrix} {X2}的骰子概率
    根据上面的概率分布表,去X=1, 2是的P相加
    P ( X ≤ 2 ) = P ( X = 1 ) + P ( X = 2 ) = 1 6 + 1 6 = 1 3 P(X \leq 2) = P(X=1) + P(X=2) = \frac 16 + \frac 16 = \frac 13 P(X2)=P(X=1)+P(X=2)=61+61=31

  2. 掷出偶数点 ⟹ X ∈ { 2 , 4 , 6 } \Longrightarrow X \in \begin{Bmatrix}2, 4, 6\end{Bmatrix} X{2,4,6}
    同理: P ( { X = 2 } ∪ { X = 4 } ∪ { X = 6 } ) = P ( X = 2 ) + P ( X = 4 ) + P ( X = 6 ) = 1 6 + 1 6 + 1 6 = 1 2 P(\{X = 2\} \cup \{X = 4\} \cup \{X = 6\}) = P(X=2) + P(X=4) + P(X=6) = \frac 16 + \frac 16 + \frac 16= \frac 1 2 P({X=2}{X=4}{X=6})=P(X=2)+P(X=4)+P(X=6)=61+61+61=21

两点分布

Q:一批产品中次品率为5%,随机抽取1件,定义: x = { 1 ,抽到次品 0 ,抽到次品 x=\begin{cases}1,抽到次品\\0,抽到次品\end{cases} x={1,抽到次品0,抽到次品,X的分布列

⟹ P ( X = 0 ) = 0.95 , P ( X = 1 ) = 0.05 \Longrightarrow P(X=0) = 0.95, P(X=1) = 0.05 P(X=0)=0.95,P(X=1)=0.05

对于,只有2种可能结果的随机试验, { A :成功 A ‾ :失败 ⟹ X = { 1 : A 发生 0 : A ‾ 发生 \begin{cases}A:成功\\ \overline A:失败\end{cases} \Longrightarrow X=\begin{cases}1:A发生\\ 0:\overline A发生\end{cases} {A:成功A:失败X={1A发生0:A发生
那么 P ( A ) = p , P ( A ‾ ) = 1 − p P(A) = p,P(\overline A) = 1-p P(A)=pP(A)=1p,即:两个事件的概率和等于1

这种只可能有2种结果的随机变量X,就符合两点分布

概率分布列怎么列

Q2:200名学生体测成绩,一共5个等级(不及格:1, 及格:2, 中等:3, 良:4, 优:5),200名学生的成绩与人数关系如下表
等级不及格及格中等
分数12345
人数2050604030
  1. 求所选学生分数X的分布列
X12345
P 20 200 \frac {20}{200} 20020 50 200 \frac {50}{200} 20050 60 200 \frac {60}{200} 20060 40 200 \frac {40}{200} 20040 30 200 \frac {30}{200} 20030
  1. 求分数大于等于良的概率,P(X>=4)的概率
    P ( X ≥ 4 ) = P ( X = 4 ) + P ( X = 5 ) P(X \geq 4) = P(X = 4) + P(X = 5) P(X4)=P(X=4)+P(X=5)
    把上面表格中X=4, 5两列的P加起来就可以了。
Q3. 10台电脑中,3台是A品牌,7台是B品牌,随机抽取2台,A品牌台数的分布列

第一台是A的概率 A 1 A_1 A1,第二台是A的概率 A 2 A_2 A2
情况1:第一台是A,第二台是B ⟹ P ( A 1 ) ⋅ P ( A ‾ 1 ) = 3 10 ⋅ 7 9 = 7 30 \Longrightarrow P(A_1)\cdot P(\overline A_1) = \frac {3}{10} \cdot \frac{7}{9} = \frac{7}{30} P(A1)P(A1)=10397=307
情况2:第一台是B,第二台是A ⟹ P ( A ‾ 1 ) ⋅ P ( A 1 ) = 7 10 ⋅ 3 9 = 7 30 \Longrightarrow P(\overline A_1)\cdot P(A_1) = \frac {7}{10} \cdot \frac{3}{9} = \frac{7}{30} P(A1)P(A1)=10793=307
情况3:第一台是A,第二台也是A ⟹ P ( A 1 ) ⋅ P ( A 1 ) = 3 10 ⋅ 2 9 = 1 15 \Longrightarrow P(A_1)\cdot P(A_1) = \frac {3}{10} \cdot \frac{2}{9} = \frac{1}{15} P(A1)P(A1)=10392=151
情况4:第一台是B,第二台也是B ⟹ P ( A ‾ 1 ) ⋅ P ( A ‾ 1 ) = 7 10 ⋅ 6 9 = 7 15 \Longrightarrow P(\overline A_1)\cdot P(\overline A_1) = \frac {7}{10} \cdot \frac{6}{9} = \frac{7}{15} P(A1)P(A1)=10796=157
令X是2台中,A品牌的数量
P ( X = 0 ) = 7 15 P(X=0) = \frac{7}{15} P(X=0)=157
P ( X = 1 ) = 7 30 + 7 30 = 7 15 P(X=1) = \frac{7}{30} + \frac{7}{30} = \frac{7}{15} P(X=1)=307+307=157
P ( X = 2 ) = 1 15 P(X=2) = \frac{1}{15} P(X=2)=151

或者用组合的方式来处理,如下:
P ( X = 0 ) = C 7 2 C 10 2 = 7 15 P(X = 0) = \frac{C_7^2}{C_{10}^2} = \frac{7}{15} P(X=0)=C102C72=157

P ( X = 1 ) = C 3 1 C 7 1 C 10 2 = 7 15 P(X = 1) = \frac{C_3^1C_7^1}{C_{10}^2} = \frac{7}{15} P(X=1)=C102C31C71=157

P ( X = 2 ) = C 3 2 C 10 2 = 1 15 P(X = 2) = \frac{C_3^2}{C_{10}^2} = \frac{1}{15} P(X=2)=C102C32=151

8. 离散性随机变量的数字特征

8.1 数学期望

甲乙两个人射击环数的概率分布如下:

环数X78910
甲射中的概率0.10.20.30.4
乙射中的概率0.150.250.40.2

甲的平均环数: 7 ∗ 0.1 + 8 ∗ 0.2 + 9 ∗ 0.3 + 10 ∗ 0.4 = 9 7*0.1 + 8*0.2 + 9*0.3 + 10*0.4 = 9 70.1+80.2+90.3+100.4=9
乙的平均环数: 7 ∗ 0.15 + 8 ∗ 0.25 + 9 ∗ 0.4 + 10 ∗ 0.2 = 8.65 7*0.15 + 8*0.25 + 9*0.4 + 10*0.2 = 8.65 70.15+80.25+90.4+100.2=8.65

反映随机变量的平均水平:期望

X x 1 x_1 x1 x 2 x_2 x2 x n x_n xn
P p 1 p_1 p1 p 2 p_2 p2 p n p_n pn

数学期望公式: E ( x ) = x 1 p 1 + x 2 p 2 + . . . + x n p n E(x) = x_1p_1 + x_2p_2 + ... + x_np_n E(x)=x1p1+x2p2+...+xnpn

Q: 游乐场里射箭中靶得1分,脱靶不得分。大聪明射箭中靶概率为0.8,那么他射箭一次得分的平均值是多少呢?
在这里插入图片描述

一些变换公式

  • E ( x + b ) = E ( x ) + b E(x + b) = E(x) + b E(x+b)=E(x)+b

E ( x + b ) = ( x 1 + b ) ⋅ p 1 + ( x 2 + b ) ⋅ p 2 + . . . + ( x + b ) ⋅ p n E(x + b) = (x_1 + b)\cdot p_1 + (x_2 + b)\cdot p_2 + ... + (x_ + b)\cdot p_n E(x+b)=(x1+b)p1+(x2+b)p2+...+(x+b)pn
= ( x 1 ⋅ p 1 + x 2 ⋅ p 2 + . . . + x n ⋅ p n ) + b ⋅ ( p 1 + p 2 + > . . . + p n ) \hspace{4em} = (x_1\cdot p_1 + x_2\cdot p_2 + ... + x_n\cdot p_n) + b\cdot (p_1 + p_2 + >... + p_n) =(x1p1+x2p2+...+xnpn)+b(p1+p2+>...+pn)
= E ( x ) + b \hspace{4em} = E(x) + b =E(x)+b

  • E ( a X ) = a ⋅ E ( x ) E(aX) = a\cdot E(x) E(aX)=aE(x)

  • E ( a X + b ) = a ⋅ E ( x ) + b E(aX + b) = a\cdot E(x) + b E(aX+b)=aE(x)+b

8.2 方差

射击比赛中,甲,乙的环数X,Y分布如下:

X678910
P0.090.240.300.280.07
Y678910
P0.070.220.380.300.03

E ( X ) = 6 ∗ 0.09 + 7 ∗ 0.24 + 8 ∗ 0.32 + 9 ∗ 0.28 + 10 ∗ 0.07 = 8 E(X) = 6 * 0.09 + 7 * 0.24 + 8 * 0.32 + 9 * 0.28 + 10 * 0.07 = 8 E(X)=60.09+70.24+80.32+90.28+100.07=8
E ( Y ) = 6 ∗ 0.07 + 7 ∗ 0.22 + 8 ∗ 0.38 + 9 ∗ 0.30 + 10 ∗ 0.03 = 8 E(Y) = 6 * 0.07 + 7 * 0.22 + 8 * 0.38 + 9 * 0.30 + 10 * 0.03 = 8 E(Y)=60.07+70.22+80.38+90.30+100.03=8

X,Y的均值相同,但是环数分布不一样,所以均值的判断并不能准确的反映成绩分布与偏离程度。

因此引入方差

D ( X ) = ( x 1 − E ( x ) ) 2 ⋅ P 1 + ( x 2 − E ( x ) ) 2 ⋅ P 2 + . . . + ( x n − E ( x ) ) 2 ⋅ P n D(X) = (x_1 - E(x))^2\cdot P_1 + (x_2 - E(x))^2\cdot P_2 + ... + (x_n - E(x))^2\cdot P_n D(X)=(x1E(x))2P1+(x2E(x))2P2+...+(xnE(x))2Pn

= ∑ i = 1 n ( x i − E ( x ) ) 2 ⋅ P i \hspace{3em} = \sum_{i=1}^{n}(x_i - E(x))^2\cdot P_i =i=1n(xiE(x))2Pi

// 看起来是不是有点像最小二乘法

方差记为: V a r ( X ) Var(X) Var(X),开平方后是标准差: D ( x ) \sqrt{D(x)} D(x)

回到上面射击的例子
D ( X ) = ∑ i = 6 10 ( x i − 8 ) 2 P ( X = i ) = 1.16 , D ( X ) = 1.077 D(X) = \sum_{i=6}^{10}(x_i - 8)^2P(X = i) = 1.16,\sqrt D(X) = 1.077 D(X)=i=610(xi8)2P(X=i)=1.16D (X)=1.077
D ( Y ) = ∑ i = 6 10 ( x i − 8 ) 2 P ( X = i ) = 0.92 , D ( X ) = 0.959 D(Y) = \sum_{i=6}^{10}(x_i - 8)^2P(X = i) = 0.92,\sqrt D(X) = 0.959 D(Y)=i=610(xi8)2P(X=i)=0.92D (X)=0.959
所以,乙的环数散布更集中

可以将方差公式化简:

D ( X ) = ∑ i = 1 n ( X i − E ( X ) ) 2 ⋅ P i D(X) = \sum_{i=1}^{n}(X_i - E(X))^2\cdot P_i D(X)=i=1n(XiE(X))2Pi

= ∑ i = 1 n ( X i 2 − 2 X i ⋅ E ( X ) + ( E ( X ) ) 2 ) ⋅ P i \hspace{3em}= \sum_{i = 1}^{n}(X_i^2 - 2X_i\cdot E(X) + (E(X))^2)\cdot P_i =i=1n(Xi22XiE(X)+(E(X))2)Pi

= ∑ i = 1 n X i 2 P i − ∑ i = 1 n 2 X i E ( X ) ⋅ P i + ∑ i = 1 n ( E ( X ) ) 2 ⋅ P i \hspace{3em}=\sum_{i = 1}^{n}X_i^2P_i - \sum_{i = 1}^{n}2X_iE(X)\cdot P_i + \sum_{i = 1}^{n}(E(X))^2\cdot P_i =i=1nXi2Pii=1n2XiE(X)Pi+i=1n(E(X))2Pi

= ∑ i = 1 n X i 2 P i − 2 E ( X ) ∑ i = 1 n X i ⋅ P i + ( E ( X ) ) 2 ∑ i = 1 n P i \hspace{3em} = \sum_{i = 1}^{n}X_i^2P_i - 2E(X)\sum_{i = 1}^{n}X_i\cdot P_i + (E(X))^2\sum_{i = 1}^{n} P_i =i=1nXi2Pi2E(X)i=1nXiPi+(E(X))2i=1nPi

= ∑ i = 1 n X i 2 P i − 2 ( E ( X ) ) 2 + ( E ( X ) ) 2 \hspace{3em} = \sum_{i = 1}^{n}X_i^2P_i - 2(E(X))^2+ (E(X))^2 =i=1nXi2Pi2(E(X))2+(E(X))2

= ∑ i = 1 n X i 2 P i − ( E ( X ) ) 2 \hspace{3em} = \sum_{i = 1}^{n}X_i^2P_i - (E(X))^2 =i=1nXi2Pi(E(X))2

Q: 这是一个具有实际意义的例子

根据天气预报,某地区近期有小洪水的概率0.25,有大洪水的概率0.01, 该地区某工地上有一台大型设备,遇到小洪水损失10000元,遇到大洪水损失60000元,为了保护设备,有以下3种方案:
方案1:运走设备:搬运费:3800元
方案2:建保护围墙,建设费2000元,但是围墙只能防小洪水
方案3:不采取措施
如何决策达到最划算。

分析条件:将洪水情况整理成X,以及方案1,2,3对应不同洪水的概率
求出三种方案中,方差最小的就O了!
在这里插入图片描述
方案1,2,3的数学期望:
在这里插入图片描述

9. 二项分布

在这里插入图片描述

独立重复 n 次 ⟹ n 重伯努利试验 { 1. 同一个伯努利试验重复 n 次 2. 试验结果相互独立 独立重复n次 \Longrightarrow n重伯努利试验 \begin{cases}1. 同一个伯努利试验重复n次\\ 2. 试验结果相互独立\end{cases} 独立重复nn重伯努利试验{1.同一个伯努利试验重复n2.试验结果相互独立

Q:某飞碟用动员设计中靶的概率是0.8,连续3次设计,中靶次数X的概率分布列?

A i :第 i 次中靶( i = 1 , 2 , 3 ) A_i:第i次中靶(i = 1, 2, 3) Ai:第i次中靶(i=123
X :中靶的次数 X:中靶的次数 X:中靶的次数

在这里插入图片描述
P ( X = 0 ) = P ( A ‾ 1 A ‾ 2 A ‾ 3 ) = 0. 2 3 P(X=0) = P(\overline A_1 \overline A_2 \overline A_3) = 0.2 ^3 P(X=0)=P(A1A2A3)=0.23
P ( X = 1 ) = P ( A 1 A ‾ 2 A ‾ 3 ) + P ( A ‾ 1 A 2 A ‾ 3 ) + P ( A ‾ 1 A ‾ 2 A 3 ) = 3 ∗ 0.8 ∗ 0. 2 2 P(X=1) = P(A_1 \overline A_2 \overline A_3) + P(\overline A_1 A_2 \overline A_3) + P(\overline A_1 \overline A_2 A_3) = 3*0.8 * 0.2^2 P(X=1)=P(A1A2A3)+P(A1A2A3)+P(A1A2A3)=30.80.22
P ( X = 2 ) = P ( A 1 A 2 A ‾ 3 ) + P ( A 1 A ‾ 2 A 3 ) + P ( A ‾ 1 A 2 A 3 ) = 3 ∗ 0. 8 2 ∗ 0.2 P(X=2) = P(A_1 A_2 \overline A_3) + P(A_1 \overline A_2 A_3) + P(\overline A_1 A_2 A_3) = 3 * 0.8^2 * 0.2 P(X=2)=P(A1A2A3)+P(A1A2A3)+P(A1A2A3)=30.820.2
P ( X = 0 ) = P ( A 1 A 2 A 3 ) = 0. 8 3 P(X=0) = P( A_1 A_2 A_3) = 0.8 ^3 P(X=0)=P(A1A2A3)=0.83
用中靶 A i A_i Ai作为选择基准:
P ( X = 0 ) = C 3 0 × 0. 8 0 × 0. 2 3 P(X=0) = C_3^0\times 0.8^0 \times 0.2^3 P(X=0)=C30×0.80×0.23
P ( X = 1 ) = C 3 1 × 0. 8 1 × 0. 2 2 P(X=1) = C_3^1\times 0.8^1 \times 0.2^2 P(X=1)=C31×0.81×0.22
P ( X = 2 ) = C 3 2 × 0. 8 2 × 0. 2 1 P(X=2) = C_3^2\times 0.8^2 \times 0.2^1 P(X=2)=C32×0.82×0.21
P ( X = 3 ) = C 3 3 × 0. 8 3 × 0. 2 0 P(X=3) = C_3^3\times 0.8^3 \times 0.2^0 P(X=3)=C33×0.83×0.20

因此,中靶次数k的公式,就可以写成
P ( X = k ) = C n k × 0. 8 k × 0. 2 3 − k P(X=k) = C_n^k \times 0.8^k \times 0.2^{3-k} P(X=k)=Cnk×0.8k×0.23k

在n重伯努利试验中,每次试验中A发生的概率为P(0<P<1),X表示事件A发生的次数。
则X的分布列:

P ( X = k ) = C n k P k ( 1 − p ) n − k , k = 0 , 1 , 2 , . . . , n P(X=k) = C_n^kP^k(1-p)^{n-k} \hspace{2em}, k=0, 1, 2, ..., n P(X=k)=CnkPk(1p)nk,k=0,1,2,...,n

随机变量X的分布列具有以上形式,则X服从二项分布,X~B(n, P)
X~B(10, 0.8):随机变量X服从二项分布,10次事件,概率0.8

二项式 ( a + b ) n (a+b)^n (a+b)n展开后,第k+1项的公式: C n k a k ⋅ b n − k C_n^ka^k\cdot b^{n-k} Cnkakbnk

P ( X = k ) = C n k P k ( 1 − p ) n − k P(X=k) = C_n^kP^k(1-p)^{n-k} \hspace{2em} P(X=k)=CnkPk(1p)nk看上去一毛一样。

那么n重伯努利试验中,X的分布列之和等于 ( P + ( 1 − P ) ) n = 1 (P + (1-P))^n = 1 (P+(1P))n=1

Q:将一枚质地均匀的硬币抛掷10次,求:
1. 恰好出现5次正面朝上的概率。

分析:
抛掷质地均匀的硬币 ⟹ { 正面 反面 \Longrightarrow \begin{cases}正面\\反面\end{cases} {正面反面
抛掷10次 ⟹ 10 重伯努利试验 \Longrightarrow 10重伯努利试验 10重伯努利试验
⟹ \hspace{4em}\Longrightarrow 正面朝上的次数服从:二项分布
令:A=正面朝上,P(A) = 1/2
X:A发生的次数,X~B(10, 1/2)
P ( X = 5 ) = C 10 5 1 2 5 1 2 5 = 63 256 P(X=5) = C_{10}^5 \frac12^5 \frac 12^5 = \frac {63}{256} P(X=5)=C105215215=25663

2. 正面朝上出现的频率在[0.4, 0.6]内的概率

分析:
等价于: 4 ≤ X ≤ 6 ⟹ X ∈ { 4 , 5 , 6 } 4 \leq X \leq 6 \Longrightarrow X \in \{4, 5, 6\} 4X6X{4,5,6}
P ( 4 ≤ X ≤ 6 ) = P ( X = 4 ) + P ( X = 5 ) + P ( X = 6 ) = 21 32 P(4 \leq X \leq 6 ) = P(X=4) +P(X=5) +P(X=6) = \frac{21}{32} P(4X6)=P(X=4)+P(X=5)+P(X=6)=3221

Q:甲乙2人下象棋比赛,每一局甲获胜概率0.6,乙获胜概率0.4,那么采用3局2胜还是5局3胜队甲更有利?

3局2胜:
甲获胜的情况:

  1. 打2局,2局都获胜,比分2:0;
  2. 打3局,最后1局肯定获胜,从前两局挑一局获胜,比分2:1
    P 1 = 0. 6 2 + ( C 2 1 × 0.6 × 0.4 ) × 0.6 = 0.648 P1 = 0.6^2 + (C_2^1\times 0.6\times 0.4)\times 0.6 = 0.648 P1=0.62+(C21×0.6×0.4)×0.6=0.648

5局3胜:
甲获胜的情况:
3. 打3局都获胜:3:0
4. 打4局,胜3局:3:1
5. 打5局,胜3局:3:2

P 2 = 0. 6 0.3 + C 3 2 × 0. 6 2 × 0.4 × 0.6 + C 4 2 × 0. 6 2 × 0. 4 2 × 0.6 = 0.68256 P2 = 0.6^{0.3} + C_3^2 \times 0.6^2 \times 0.4 \times 0.6 + C_4^2 \times 0.6^2 \times 0.4^2 \times 0.6 = 0.68256 P2=0.60.3+C32×0.62×0.4×0.6+C42×0.62×0.42×0.6=0.68256

P2>P1:所以5局3胜更有利于甲。

  • 16
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值