Pandas数据分析②——数据清洗(重复值/缺失值/异常值)

本文详细介绍了Pandas进行数据清洗的三个步骤:重复值处理、缺失值处理和异常值处理。讨论了如何删除重复值,填充或删除缺失值,以及使用描述性统计和图表定位并处理异常值。内容涵盖了各种处理方法和技术,是进行数据预处理的重要参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pandas系列目录
Pandas数据分析①——数据读取(CSV/TXT/JSON)
Pandas数据分析③——数据规整1(索引和列名调整/数据内容调整/排序)
Pandas数据分析④——数据规整2(数据拼接/透视)
Pandas数据分析⑤——数据分组与函数使用(Groupby/Agg/Apply/mean/sum/count)
Pandas数据分析⑥——数据分析实例(货品送达率与合格率/返修率/拒收率)
Pandas数据分析⑦——数据分析实例2(泰坦尼克号生存率分析)

数据清洗分为三步(文末有大礼赠送):

重复值处理——删除(有几个相同就删除还是全部得相同)
缺失值处理——删除,填充(均值,众数,中位数,前后相邻值),插值(拉格朗日插值,牛顿插值)
异常值处理——describe进行描述性分析+散点图+箱型图定位异常值,处理方法:删除,视为缺失值

一、重复值处理

① 先用duplicated()方法进行逻辑判断,确定是否有重复值

data = pd.read_csv("data.csv",encoding='gbk')
print(data.duplicated().value_counts())    

在这里插入图片描述
② 再用duplicates(subset,keep,inplace)方法对某几列下面的重复行删除
subset:以哪几列作为基准列,判断是否重复,如果不写则默认所有列都要重复才算
keep: 保留哪一个,fist-保留首次出现的,last-保留最后出现的,False-重复的一个都不保留,默认为first
inplace: 是否进行替换,最好选择False,保留原始数据,默认也是False

data.drop_duplicates(subset=["订单号","订单行"],keep='first',i
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值