7月25日签到题,题目如下:
给定一个非负整数数组和一个整数 m,你需要将这个数组分成 m 个非空的连续子数组。设计一个算法使得这 m 个子数组各自和的最大值最小。
注意:
数组长度 n 满足以下条件:
- 1 ≤ n ≤ 1000
- 1 ≤ m ≤ min(50, n)
示例:
输入: nums = [7,2,5,10,8] m = 2 输出: 18 解释: 一共有四种方法将nums分割为2个子数组。 其中最好的方式是将其分为[7,2,5] 和 [10,8], 因为此时这两个子数组各自的和的最大值为18,在所有情况中最小。
这两天才知道 7 月题目是动态规划主题,这题也是先想到动态规划,但是想了许久无果,还是看题解。
看到两种题解,一个是动态规划,另一个是二分查找。因为是周末,没什么心思做下去,所以只看了二分查找,大致思路如下:
假设已知这个最小的最大值 value ,枚举数组,累加元素。如果累加所得结果超过 value,因为 value 是所有子数组各自和的最大值,每个子数组结果不该超过 value,所以从该位置重新累加,之前累加为一个连续子数组。枚举结束后,可以知道对应这个 value 数组被划分成多少个子数组 count,valu