机器学习中的数学

本文介绍了机器学习中几个关键的数学概念:向量、梯度、Jacobian矩阵和Hessian矩阵,以及泰勒级数在多元函数中的应用。向量默认为列向量,梯度表示函数变化,Jacobian矩阵用于描述多变量函数的变化,Hessian矩阵则表示函数的二阶导数信息,泰勒级数用于函数的近似展开。
摘要由CSDN通过智能技术生成

一、向量

在这里插入图片描述
机器学习中的向量默认都是列向量,竖着排列的,如果是行向量的话,就要在右上角加一个转置符号T

二、梯度

在这里插入图片描述
注意,y关于x的梯度也是一个列向量

三、Jacobian矩阵

设一个函数:

在这里插入图片描述
在这里插入图片描述
即n维空间到m维空间的映射
这个函数f的Jacobian矩阵是一个m行n列的矩阵
在这里插入图片描述
例:以下函数将(x1,x2,x3)映射为了(y1,y2.y3,y4)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值