transformers库的BertTokenizer新增token
在与vocab.txt同级的地方新建added_tokens.json,写入以下内容:
{
"[X_SEP]":12345,
"[SEN_SEP]":1
}
key值是token,value值为该token对应的id。
如上所示,tokenizer.encode('[X_SEP][SEN_SEP]'), 得到的结果是[12345,1]
Tokenizers库的一些操作
如果对tokenize和encode的性能有要求,建议使用tokenizers库 【更新:现在transformers库已经使用rust编写的tokenziers了,不必大费周章了】
>>>from tokenizers import BertWordPieceTokenizer
>>>tokenizer = BertWordPieceTokenizer('path/to/vocab.txt')
>>><

本文介绍了如何在transformers库的BertTokenizer中新增token,包括在vocab文件中添加新词汇以确保tokenizer能正确处理。同时提到了如果对性能有高要求,可以考虑使用Tokenizers库,但现在transformers库已采用rust编写的tokenizer,性能问题得以解决。
最低0.47元/天 解锁文章
5540

被折叠的 条评论
为什么被折叠?



