Bert tokenizer新增token

本文介绍了如何在transformers库的BertTokenizer中新增token,包括在vocab文件中添加新词汇以确保tokenizer能正确处理。同时提到了如果对性能有高要求,可以考虑使用Tokenizers库,但现在transformers库已采用rust编写的tokenizer,性能问题得以解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

transformers库的BertTokenizer新增token

在与vocab.txt同级的地方新建added_tokens.json,写入以下内容:

{
   
	"[X_SEP]":12345,
	"[SEN_SEP]":1
}

key值是token,value值为该token对应的id。

如上所示,tokenizer.encode('[X_SEP][SEN_SEP]'), 得到的结果是[12345,1]

Tokenizers库的一些操作

如果对tokenize和encode的性能有要求,建议使用tokenizers库 【更新:现在transformers库已经使用rust编写的tokenziers了,不必大费周章了】

>>>from tokenizers import BertWordPieceTokenizer
>>>tokenizer = BertWordPieceTokenizer('path/to/vocab.txt')
>>><
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值