Bresenham算法理解

Bresenham

bresenham算法是计算机图形学中为了“显示器(屏幕或打印机)系由像素构成”的这个特性而设计出来的算法,使得在求直线各点的过程中全部以整数来运算,因而大幅度提升计算速度。

算法基本思想请参考 https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

实现代码

这篇文章主要解释下面的代码(即如何只进行整数运算),如果能够理解下面的代码,完全可以跳过这篇文章。

// 来源:https://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#C
// 请注意此代码中无任何浮点数运算
void line(int x0, int y0, int x1, int y1) {
 
  int dx = abs(x1-x0), sx = x0<x1 ? 1 : -1;
  int dy = abs(y1-y0), sy = y0<y1 ? 1 : -1; 
  int err = (dx>dy ? dx : -dy)/2, e2;
 
  for(;;){
    setPixel(x0,y0);
    if (x0==x1 && y0==y1) break;
    e2 = err;
    if (e2 >-dx) { err -= dy; x0 += sx; }
    if (e2 < dy) { err += dx; y0 += sy; }
  }
}

直线方程

众所周知,最基本的斜截式直线方程为 y = k x + b ( k 为 斜 率 , b 为 截 距 ) y=kx+b(k为斜率, b为截距) y=kx+b(k,b)。这个方程存在的缺点是无法表示直线 x = α x=\alpha x=α,所以用一个新的方程来代替 A x + B y + C = 0 Ax+By+C=0 Ax+By+C=0

Bresenham

Bresenham画直线的算法主要解决的问题是如何判断下一点的位置。维基百科中有一张图比较形象
Bresenham图
图中,每一个点代表的是一个像素,假定我们有直线 f ( x , y ) f(x,y) f(x,y)且当前坐标为 ( x , y ) (x,y) (x,y),判断下一个点的y轴坐标步骤为(如果要确定x轴坐标也类似):

Created with Raphaël 2.2.0 起始坐标(x,y) 计算f(x+1, y)中y的值ny ny-y < 1 y End y+1 yes no

代码理解

如上面所述,我们现在能够判断直线的下一个像素点在那里了,但是Bresenham算法的优点还没有体现:我们还需要计算浮点数。为了避免浮点数计算,我们要更深入地发现划线的规律。

这里我们只考虑 x 1 < x 2 x_1<x_2 x1<x2并且 y 1 < y 2 y_1<y_2 y1<y2的情况,实际上我们也只需要考虑这种情况,正如前面代码所写的sx, sy,通过这两个变量我们便能控制要画的直线方向是正确的。

  • Bresenham的输入为两个点 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1, y_1), (x_2,y_2) (x1,y1),(x2,y2)。根据这两个点,我们能够计算出两点之间的“距离“。这里的距离用的是绝对值,对应的是代码里的dx, dy
    Δ x = ∣ x 1 − x 2 ∣ Δ y = ∣ y 1 − y 2 ∣ \Delta x=|x_1-x_2|\\ \Delta y=|y_1-y_2| Δx=x1x2Δy=y1y2
    根据斜截式 y = k x + b y=kx+b y=kx+b,我们有 y = Δ y Δ x x + b y=\frac{\Delta y}{\Delta x}x+b y=ΔxΔyx+b,进而有
    Δ y x − Δ x y + C = 0 \Delta y x-\Delta x y+C = 0 ΔyxΔxy+C=0
    在这条公式中:
    x + 1 ⇒ y + Δ y Δ x y + 1 ⇒ x + Δ x Δ y x+1 \Rightarrow y+\frac{\Delta y}{\Delta x} \\ y+1 \Rightarrow x +\frac{\Delta x}{\Delta y} x+1y+ΔxΔyy+1x+ΔyΔx
  • 实际上,用于判断下一个点的位置的就是 Δ y Δ x \frac{\Delta y}{\Delta x} ΔxΔy Δ x Δ y \frac{\Delta x}{\Delta y} ΔyΔx。这两个值变化的根本目的是使上面的方程成立,根据这一点,我们直接引入一个变量 e r r err err避免浮点数运算(对应代码中的erre2
    Δ y x − Δ x y + C + e r r = 0 x + 1 ⇒ e r r − Δ y y + 1 ⇒ e r r + Δ x \Delta y x-\Delta x y+C +err= 0 \\ x+1 \Rightarrow err-\Delta y \\ y+1 \Rightarrow err+\Delta x ΔyxΔxy+C+err=0x+1errΔyy+1err+Δx
  • 现在我们已经能够将 e r r err err x , y x, y x,y 联系起来,但是还有一个很重要的问题没有解决:判断增加x轴坐标还是增加y轴坐标
    首先假设我们在起始坐标 ( x , y ) (x,y) (x,y),当前的 e r r err err也是正确的,现在需要判断下一个点的坐标。
    根据传统的Bresenham算法:
    ( x + Δ x Δ y ) − ( x + 1 ) > 0 ⇒ Δ x − Δ y > 0 ⇒ x + 1 ( y + Δ y Δ x ) − ( y + 1 ) > 0 ⇒ Δ y − Δ x > 0 ⇒ y + 1 (x+\frac{\Delta x}{\Delta y})-(x+1)>0 \Rightarrow \Delta x-\Delta y>0 \Rightarrow x+1\\ (y+\frac{\Delta y}{\Delta x})-(y+1)>0 \Rightarrow \Delta y-\Delta x>0\Rightarrow y+1 (x+ΔyΔx)(x+1)>0ΔxΔy>0x+1(y+ΔxΔy)(y+1)>0ΔyΔx>0y+1
    我们更关注中间的部分,结合上一点所说的 e r r err err Δ x , Δ y \Delta x,\Delta y Δx,Δy的关系对其进行变形
    Δ x − Δ y > 0 ⇒ − Δ y > − Δ x Δ y − Δ x > 0 ⇒ + Δ x < Δ y \Delta x-\Delta y>0 \Rightarrow -\Delta y>-\Delta x\\ \Delta y-\Delta x>0\Rightarrow +\Delta x < \Delta y ΔxΔy>0Δy>ΔxΔyΔx>0+Δx<Δy
  • 从上面的公式看来似乎是与 e r r err err有点关系了,但是还不明确,那是因为我们的推到基于起始点,倘若基于的不是起始点,那么该公式应当为
    Δ x − Δ y > 0 ⇒ ε − Δ y > − Δ x Δ y − Δ x > 0 ⇒ ε + Δ x < Δ y \Delta x-\Delta y>0 \Rightarrow \varepsilon -\Delta y>-\Delta x\\ \Delta y-\Delta x>0\Rightarrow \varepsilon+\Delta x < \Delta y ΔxΔy>0εΔy>ΔxΔyΔx>0ε+Δx<Δy
    ε \varepsilon ε为一个累加值,其来源与当前点 ( x , y ) (x,y) (x,y)和起始点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的相对位置有关,个人理解是:每一次 x + 1 x+1 x+1 y + 1 y+1 y+1都会让原来的直线平移,这个平移便会造成误差,而这个误差会随着程序的进行而不断累加,而这个累加值对应的正是 e r r err err
  • 现在我们就有能力将 e r r err err和程序中的err联系起来了。
    if后的条件与上面的公式对应,而err ε \varepsilon ε不同。不同之处是:err是已经计算好的 ε − Δ y \varepsilon-\Delta y εΔy ε + Δ x \varepsilon+\Delta x ε+Δx。我们可以这样思考:在某一个点 ( x , y ) (x,y) (x,y)处,我们已经计算得到了正确的、可以用于判断的 e r r err err,当我们选择下一个点时,我们可以顺便把下一个点的 e r r err err给计算了,这就是代码中err -= dy; err += dx;蕴含的意思。
if (e2 >-dx) { err -= dy; x0 += sx; }
if (e2 < dy) { err += dx; y0 += sy; }
  • 关于err的初始化 Updated in 2020

我们注意到代码中对err进行了初始化。在前面我们的推导忽略了一个部分:起始点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) e r r err err。从公式 A x + B y + C + e r r = 0 Ax+By+C+err=0 Ax+By+C+err=0上看,起始点的 e r r err err应当为 0 0 0才对,但是代码中用了一个奇怪的值进行了初始化。看起来二者是矛盾的,但是err的初始化实际上是另一个小技巧。

int err = (dx>dy ? dx : -dy)/2 // 初始化,后面解释

看回前面提到的那张图,蓝色点为起始点。倘若人工进行判断,我们会根据黑色点的位置 b l a c k black black决定下一个点在何处。当 b l a c k > 0.5 black>0.5 black>0.5时我们会选择下面的绿点,否则选择上面的绿点。
Bresenham图
然而此处的0.5会引入浮点数运算。我们还有一种选择:将起始点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)上移半个单位(这里只考虑 Δ x > Δ y \Delta x>\Delta y Δx>Δy,其余情况同理)。因为起始点相对于第一个像素有了偏移,引入了误差 e r r err err,根据前面对 e r r err err的推导有:
x 1 + 0.5 ⇒ e r r − Δ y / 2 y 1 + 0.5 ⇒ e r r + Δ x / 2 x_1+0.5\Rightarrow err-\Delta y/2\\ y_1+0.5\Rightarrow err+\Delta x/2 x1+0.5errΔy/2y1+0.5err+Δx/2
这样便能解释err的初始值问题,而且与我们前面的推导是一致的。

  • 至此,Bresenham算法理解完成。

最后的补充
  • Bresenham算法思想很简单,为什么要用这么长的文章解释?
    基本思想的确很简单,但是为了不计算浮点数实现时进行了复杂的优化,最终得到的便是文章开头的代码。文章希望解释的是开头的代码。
  • 文章的图/公式有错?
    非常希望有机会在讨论区进行技术交流,但是只提出错误却没有依据很可能会误导他人,也没法帮助debug。麻烦明确指出错误的图片/公式,是什么错误,与你所期望不符的地方,以及你所认为的正确的结果。
  • 53
    点赞
  • 171
    收藏
    觉得还不错? 一键收藏
  • 13
    评论
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值