1、什么叫做形式逻辑
形式逻辑,只看形式不看内容的逻辑,一定要只看结构不看内容。
那么什么是结构,如何把题干中的文字内容转化成结构?
我们先要了解:
1)链接最小单位的连接符: “逻辑符号”
非( ¬ ) OR(∨) AND(∧) —>(推出)
2)形式逻辑结构里的最小单位“命题/事实性论述”
2、什么叫做逻辑连词
固定的文字表述固定的逻辑符号,这些固定的文字叫做“逻辑连词”
“+”, 用文字表述为:相加,之和。
“×”, 用文字表述为:相乘,之积,
“OR(∨)” 用文字表述为:或者,或,至少有一个
“and(∧)” 用文字表述为:并且;且;即使,也;同时满足;
“非(¬)” 用文字表述为:并非,为假,不,没有
"—>"用文字可表述为:
如果,那么;只要,就;所有的都是;要…必须得 等等
3、什么叫做一个“事实性论述/命题/判断”
被逻辑连词分隔开的论述,当作一个整体来看。
用or连接两个论述: 明天下雨,或者明天晴天
用and连接两个论述: 小王笔试过关,并且他面试也过关。
用—>连接两个论述: 通过提面的同学,只要英语过线并且总分过线,就可以被学
校录取。
4、逻辑符合的组合
"非" +“or” | 非( A or B )= 非A and 非B |
非( 非A or B )= A and 非B | |
“非” + “and” | 非( A and B )= 非A or 非B |
非( 非A and B )= A or 非B | |
“or” + “and” | A or B and C:小王去,或者小张和小李一起去 |
(A or B) and C::小王或小张去,并且小李要去 | |
“or + and + "—>” | A or B —>C |
A or B —> C and D | |
“非” + “—>” | 非A —>B, 如果不下雨,那么我们就出去玩 |
非(A —>B), 并非(如果下雨,我们就出去玩) | |
非(A —>B)等同于 A and 非B |
“并非在句首修饰全句” 例如:并非来自陕西或者来自北京
“非”“不” 紧跟着修饰词 他不喜欢运动或者喜欢看书
优先级:
1、“并非”在句首,全句跟它走
2、 看到推出符号(逻辑箭头“—>” ),左右加括号
3、先且后或,“不”只跟最近的词
5、单向推理思维模型
推理的方向为单向:即从题干给出的确定条件,去推理确定未知条件的真假。
A—>B,和B—>A,是截然不同的两个逻辑。
【A论述】手里拿的牌是5 【B论述】手中的牌大于3
在A论述为真的情况下,可推出B论述为真,在B论述为真的情况下,A论述真假不确定
6、逻辑“—>” 必备基本概念
A —> B 关系的定义:在A发生的情况下,B一定会发生。(A不一定发生)
例句:如果病人出门,就需要有看护人员陪同。
A—>B ; B <— A 逻辑的含义仅取决于箭头的指向,跟摆放的方向无关
例句:小王娶了小张,小张嫁给小王。
A—>B 若成立,那么它的逆否命题,非B—>非A也成立。
例句:如果要被录取,必须要分数过线。
例句的逆否命题:如果分数不过线,说明不会被录取
7、什么叫做命题的“逆否命题”
把一个逻辑箭头的逻辑箭头方向取反,并且把两边命题分别加非,得到的命题
就是原命题的逆否命题
A—>B的逆否命题 | 非B—>非A |
B—>A的逆否命题 | 非A—>非B |
非A—>B的逆否命题 | 非B—>A |
A—>非B的逆否命题 | 非B—>非A |
A—>B or C的逆否命题 | 非B and 非C —>非A |
A<—B or C逆否命题 | 非A —>非B and 非C |
A—> B and C 逆否命题 | 非B or 非C —> 非A |
8、逻辑"—>"的相关考点
1)、逻辑—>的常见文字表述,从文字理解层面,进入逻辑思维层面
2)、在逻辑为真的情况下:(逻辑在题干中,关键字:“根据以上信息”,“根据以上结论”)
2.1 寻找它的等价命题(逆否命题,与or命题的转化)
2.2 寻找它的矛盾命题(前真后假秒杀)
2.3 代入逻辑推事实真(AB成立,A为真,可推出B为真)
3)、在逻辑不确定为真的情况下
3.1 仅在满足前真 and 后假,逻辑为假
3.2 前假(不满足前真),逻辑为真
4)、逻辑真与事实真的思维模型
9、常见的逻辑连词及逻辑表述
如果(A),那么(B) | A—>B |
如果(A),则(B) | A—>B |
所有的(A),都是(B) | A—>B |
(A),说明/证明有(B) | A—>B |
只要(A),就(B) | A—>B |
只有(A),才(B) | B—>A |
如果(不A),那么(B) | 非A—>B |
如果(A),则(不B) | A—>非B |
只有(没有A),才会是(B) | A—>非B |
不是(A),就是(B) | 非A—>B |