论文研读_多目标部署优化:无人机在能源高效无线覆盖中的应用(ImMOGWO)

论文研读_多目标部署优化:无人机在能源高效无线覆盖中的应用

  • 此篇文章为Multi-objective Deployment Optimization of
    UAVs for Energy-Efficient Wireless Coverage
    的论文学习笔记,只供学习使用,不作商业用途,侵权删除。并且本人学术功底有限如果有思路不正确的地方欢迎批评指正!

摘要

近年来,无人机(UAVs)因其灵活性和低成本而受到广泛关注。然而,多个无人机的使用存在一些限制,如能源有限和协同覆盖的问题。为了实现更好的覆盖性能,每个无人机需要找到最佳位置,以覆盖尽可能多的地面用户同时节约能源。然而,覆盖效用与能耗之间存在权衡。在本文中,我们研究了一个多无人机通信场景,其中多无人机阵列被部署以为移动地面用户提供无线覆盖。考虑到无人机的数量、三维位置和速度,我们构建了一个覆盖效用与能耗多目标优化问题(CUEMOP),旨在同时最大化总覆盖效用和最小化无人机的总能耗。由于所构建的CUEMOP问题的复杂性和NP难度,我们提出了一种改进的多目标灰狼优化(ImMOGWO)算法。在该算法中,我们设计了角色确定(RD)算法来对地面用户进行聚类,并为无人机数量和位置的初始化做准备。混合解初始化(HSI)算法用于初始化多维变量并克服随机初始化引起的算法效率低下问题。基于MOGWO算法的Levy飞行和正余弦方法(LSCMGA)被提出,以增加解决方案的多样性并确保算法的收敛效果。仿真结果验证了所提出的 ImMOGWO 算法与其他一些基准方法相比具有更好的性能。

1. 引言

随着物联网(IoT)的发展,将无人机(UAVs)作为飞行基站使用,在不同场景下提高无线网络的覆盖性能被视为一种有前景的方法,这些场景包括临时热点区域和紧急情况等。如图1所示,对于像医院或体育场这样的大型人流区域,由于地面用户数量的急剧增加,移动网络的需求将急剧上升,这将导致地面通信设施的拥堵和瘫痪。与地面基站相比,无人机能够灵活地改变位置,并且能够与地面设备保持直视(LoS)连接。因此,优化部署位置已成为研究的热门话题。

4. 改进的多目标灰狼优化(ImMOGWO)算法

在本节中,我们首先介绍所提出的改进的多目标灰狼优化(ImMOGWO)算法的动机。随后,将介绍作为ImMOGWO算法第一部分的角色确定(RD)算法。最后,ImMOGWO算法的第二部分包括混合解初始化(HSI)算法和基于Levy飞行与正余弦方法(LSCMGA)的解决方案更新操作。

A. 动机

多目标优化与单目标优化不同,在多目标优化问题(MOP)中比较解决方案较为困难,因为多目标空间具有多重目标比较度量。据[43]所述,Francis Ysidro首次提出了在多目标优化中比较解决方案的概念。例如,仅当解决方案A在所有目标函数中实现更好或等同的目标值,并且在至少一个目标函数中确保更好的值时,解决方案A才优于(支配)解决方案B。帕累托最优前沿是多目标优化问题的最终解决方案。MOGWO算法通过狼的狩猎规则接近目标[44]。每只灰狼的位置代表解空间中的一个可行解。在群体中,三只灰狼占据最佳位置,分别命名为α、β、δ。其余非领导狼统一命名为ω。在狩猎过程中,这三只狼将带领其余狼移动并捕捉猎物,直到找到猎物(最优解)。
传统MOGWO算法的有效性通过一些测试函数得到验证。然而,由于我们的多目标优化问题与测试函数不同,直接使用传统MOGWO算法解决我们的多目标问题是不合适且低效的。原因在于,我们问题的解包含完全不同的物理因素,例如用户移动性、位置和速度,它们相互影响。每个个体包含所有无人机的信息,这是一个多维变量。传统的MOGWO可能会在冗余的解空间中消耗不必要的资源。因此,使用传统的MOGWO算法更新这些变量是低效的。提出了ImMOGWO算法以解决上述缺点,其中RD算法旨在克服随机初始化引起的算法低效问题。由于混合解被求解,HSI用于初始化混合解。然后,我们使用基于MOGWO算法的LSC方法增加解决方案的多样性并提高算法效率。
加权切比雪夫方法[45]可以提供一个最优帕累托点。然而,使用均匀加权切比雪夫方法获得的解通常不是均匀分布的。为解决这个问题,改进的加权切比雪夫方法增加了参数ρ。但是,参数ρ难以设置。一个值可能会导致计算困难,而较大的值可能会导致一些非支配点被忽视。此外,我们的优化问题中考虑了混合物理因素,如用户移动性、无人机的数量、位置和速度,它们相互影响。每个个体包含所有无人机的信息,这是一个多维变量。如果问题被分解为多个子问题优化,由于变量的相互作用,计算复杂性将增加。最后,加权切比雪夫方法需要找到与问题相对应的适当参考点。不同于符号测试函数,不同场景中问题相对应的参考点是不同的,这将导致不完整的解决方案。

B. 地面用户(GUs)角色确定算法

鉴于地面用户(GUs)可以随机移动且分布不均,使用无人机(UAV)的随机初始位置初始化是非常低效的。为了防止无人机随机初始化导致的算法效率低下,我们设计了用于无人机位置初始化的角色确定(RD)算法。然后,对于一些传统的聚类算法,例如K-means算法[46],需要预先给定簇的数量。此外,聚类结果严重受到初始聚类中心选择的影响[47]。为了弥补传统聚类算法的不足,RD算法旨在将地面用户划分为几个簇,并根据簇内用户的数量和距离预测无人机的数量和位置。在每个时间段内,地面用户被视为静止的,使用RD算法确定每个时间段的簇分布。当地面用户的位置随着时间段的变化而变化时,RD算法将再次运行。

每个基站用户(GU)可以决定其角色,即作为簇中心或非簇中心。簇分布表示为 χ = { χ 1 , χ 2 , . . . , χ N } \chi = \{\chi_1, \chi_2, ..., \chi_N\} χ={χ1,χ2,...,χN} ,其中 χ i ∈ { 0 , 1 } \chi_i \in \{0,1\} χi{0,1} 。当 χ i = 0 \chi_i = 0 χi=0时,表示第 i i i 个 GU 作为簇中心。当 χ i = 1 \chi_i = 1 χi=1 时,表示第 i i i 个 GU 是非簇中心。对于给定的簇分布 χ \chi χ ,适应度函数 F i t ( χ ) Fit(\chi) Fit(χ) 被定义为反映簇内个体的身份以及不同簇之间的差异,其表达方式为:

其中 N ( χ ) N(\chi) N(χ) 是簇的数量。 R χ ( i ) R_\chi(i) Rχ(i) 表示最小的组间距离与组内距离的比率,用于评估配置 χ \chi χ 的聚类效果,其定义为。这里 R χ ( i ) = min ⁡ j ≠ i m i j e i + e j . e j \begin{aligned}R_\chi(i)=\min_{j\neq i}\frac{m_{ij}}{e_i+e_j}.e_j\end{aligned} Rχ(i)=j=iminei+ejmij.ej e j e_j ej 是第 j j j 个簇中基站用户(GU)与该簇中心之间的平均距离, e i e_i ei 是第 i i i 个簇中的 GU 与其簇中心之间的平均距离。 m i j m_{ij} mij 则是第 i i i 个簇和第 j j j 个簇的中心之间的距离。

其中 B 是一个正常数。为了获得最优的簇分布,必须最大化适应度函数 F i t ( χ ) Fit(\chi) Fit(χ)。设X代表所有可行的 χ \chi χ 的集合,即:

所提出的 RD 算法在每个时间槽的过程如算法1所示。每个基站用户( GU )随机初始化其角色,决定是否作为簇中心。此时, GU n n n 将广播其自身信息,包括角色和位置信息,并接收其他 GU a a a 的信息。当所有 GU 都接收到其他 GU 的信息后,每个 GU 根据欧几里得距离加入最近的簇。这样就可以获得簇分布 χ \chi χ 。与此同时,每个 GU 计算 R χ ( i ) R_\chi(i) Rχ(i) i = 1 , 2 , . . . , N ( χ ) i = 1,2,...,N(\chi) i=1,2,...,N(χ))和 F i t ( χ ) Fit(\chi) Fit(χ) 。然后,每个 GU 生成一个遵循正均值的指数分布的随机数。 GU 将根据生成的随机数衰减。衰减到零后, GU 将根据概率 p χ χ ^ p_{\chi}^{\hat{\chi}} pχχ^ 改变当前角色。即GU的角色将从非簇中心变为簇中心,或从簇中心变为非簇中心。 GU 将根据概率 1 − p χ χ ^ 1 - p_{\chi}^{\hat{\chi}} 1pχχ^ 保持当前角色。如果 GU 没有改变其角色,它将重新生成一个遵循指数分布的随机数并衰减。如果 GU 改变了当前的角色状态,它将向其他用户广播新角色,并生成一个新的随机数以重新开始衰减过程。当其他GU接收到新角色时,他们可能会退出当前簇并加入新簇。这样就可以获得新的簇分布 χ ^ \hat{\chi} χ^ 。然后再次计算 R χ ^ ( i ) R_{\hat{\chi}}(i) Rχ^(i) i = 1 , 2 , . . . , N ( χ ^ ) i = 1,2,...,N(\hat{\chi}) i=1,2,...,N(χ^))。之后,每个 GU 继续其衰减过程。在 GU 衰减过程结束时,将基于簇分布 χ ^ \hat{\chi} χ^ 重新计算改变角色的概率。迭代结束直到适应度函数 F i t m Fit_m Fitm 收敛,从而可以获得簇分布的结果。 RD 算法通过将 GU 分组到簇中,为混合解初始化算法(HSI)做准备,以提高算法的收敛效果。

C. 无人机的能源高效部署

为了增强传统的多目标灰狼优化( MOGWO )算法的性能并克服其面临的挑战,提出了混合解初始化算法( HSI )以初始化所有变量,从而改善算法的收敛效果。此外,为了避免局部最优并加速收敛, LSC 方法被应用于局部搜索聚类多目标遗传算法( LSCMGA ),该算法可以在每个时间槽中运行。

  1. 解决方案初始化:传统的群体智能算法通过在边界内均匀分布初始化种群。然而,对于搜索空间较大的优化问题,普通随机初始化获得的种群具有很大的不确定性,这容易导致算法过早地收敛到局部极值。为此,我们提出了混合解初始化算法( HSI ),以初始化决策变量,加快收敛速度并提高个体初始化的多样性。在该算法中,所需无人机( UAV )的数量和每架无人机的位置被纳入我们的决策变量。当簇的数量过大时,每个簇对应一架无人机显然是不现实的。因此,我们提出在一定概率下,一个簇由一架无人机相对应地覆盖。我们将无人机的状态定义为 U N cluster × 1 = [ U 1 , U 2 , . . . , U N cluster ] UN_{\text{cluster}} \times 1 = [U_1, U_2, ..., U_{N_{\text{cluster}}}] UNcluster×1=[U1,U2,...,UNcluster] ,且 U j ∈ { 0 , 1 } U_j \in \{0,1\} Uj{0,1} 。当 U j = 1 U_j = 1 Uj=1 时,表示第 j j j 架无人机需要覆盖第 j j j 个簇;否则,第 j j j 架无人机将不被考虑。这里我们定义第 j j j 个簇的重要性为。它与簇中用户 ϖ c c j , j ∈ { 1 , 2 , . . , N c l u s t e r } \begin{aligned}\varpi_{cc}^j,j\in\{1,2,..,N_{cluster}\}\end{aligned} ϖccj,j{1,2,..,Ncluster} 的数量成正比,可以表示为 ϖ c c j ∝ C j , n u m \varpi_{cc}^j\propto C_{j,num} ϖccjCj,num 。这意味着簇中 GU(基站用户)越多,该簇的重要性就越高。然后,第 j j j 个候选无人机对应第 j j j 个簇的需求概率由簇的重要性和簇之间的距离决定,表达为:

其中, r j m i n = min ⁡ j ≠ i r i , j \begin{aligned}r_j^{min}&=\min_{j\neq i}r_{i,j}\end{aligned} rjmin=j=iminri,j 表示第 j j j 个簇与其他簇之间的最小距离。簇的重要性越大且最小距离越长,相应的无人机被需要的概率就越高。根据方程式(18),我们可以得到 [ U 1 , U 2 , . . . , U N cluster ] [U_1, U_2, ..., U_{N_{\text{cluster}}}] [U1,U2,...,UNcluster] 。因此,无人机的数量初始化为 K = ∑ i U i K = \sum_i U_i K=iUi
接着,每架所需无人机的位置通过相应簇中心位置进行初始化。我们使用正态分布来计算无人机在不同区域降落的概率。当第 j j j架无人机需要覆盖第 j j j个簇,且簇中心位置为 p o j c c → = ( x j c c , y j c c ) \overrightarrow{po_j^{cc}}=\left(x_j^{cc},y_j^{cc}\right) pojcc =(xjcc,yjcc)时,第 j j j 架无人机悬停的水平位置 po j U = ( x j U , y j U ) \text{po}_j^U = (x_j^U, y_j^U) pojU=(xjU,yjU) 按照概率密度公式进行初始化:

其中,均值为 p o j c c → \overrightarrow{po_j^{cc}} pojcc σ \sigma σ 是簇中基站用户( GU )与簇中心之间的平均距离,通过 σ = ( ∑ n ( d n j n ) 2 ) / C j , num \sigma = \sqrt{(\sum_n (d_{n_j}^n)^2)/C_{j,\text{num}}} σ=(n(dnjn)2)/Cj,num 计算得出。 C j , num C_{j,\text{num}} Cj,num 是第 j j j 个簇中 GU 的数量。 d n j n d_{n_j}^n dnjn 是第 j j j个簇中心与簇中第 n n n 个 GU 之间的距离。我们设定 S j n S_{j}^{n} Sjn 是以第 j j j 个簇中心为中心,半径为 d n j n d_{n_j}^n dnjn 的圆形区域。根据方程式(19),第 j j j 架无人机的水平位置在圆形区域 S j n S_{j}^{n} Sjn 内初始化的概率为:

每架无人机找到自己的水平位置后,根据这个位置初始化自己的高度和速度。对于给定的 θ opt \theta_{\text{opt}} θopt和路径损耗阈值 ψ th \psi_{\text{th}} ψth,计算最大覆盖半径 R k R_k Rk。然后,代入 R k R_k Rk θ opt \theta_{\text{opt}} θopt,得到初始高度。

由于无人机在垂直方向的能耗仅与时间相关,因此在垂直方向的速度 v z v_z vz被设定为一个固定值。这里我们仅考虑水平方向上的速度。然后,根据文献[48],第 k k k架无人机(优化目标 f 2 f_2 f2)在每个时间槽 t t t的能耗 E k E_k Ek可以转化为满足Karush-Kuhn-Tucker(KKT)条件的问题。

其中, δ t \delta_t δt是第 t t t个时间槽的长度, c c c代表一个常数,可以通过方程式(10)计算得出。通过求解问题(22a)的KKT条件,我们可以得到每架无人机对应于最低能耗的速度值。HSI算法的过程展示在算法2中。

  1. 解决方案更新:传统的MOGWO算法采用系数向量 A ~ i \tilde{A}_i A~i C ~ i \tilde{C}_i C~i来更新解决方案。 C ~ i \tilde{C}_i C~i代表探索性,是[0,2]范围内的随机值。随着迭代次数的增加, A ~ i \tilde{A}_i A~i的探索能力和开发能力将逐渐失衡,这导致算法陷入局部优化。受到Levy飞行策略和SCA[49]的启发,我们使用改进的衰减因子来分别平衡算法的全局搜索能力和局部搜索能力,以弥补传统MOGWO算法容易陷入局部优化的缺陷。

最优解被视为α狼。β狼和δ狼分别是第二和第三优的解决方案。其余非领导狼均被统称为ω狼。在我们提出的LSCMGA算法中,在根据适应度函数值选出前三个最优解后,我们采用了SCA的思想来接近猎物,以避免陷入局部优化。其公式如下:

其中 i = { 1 , 2 , 3 } i = \{1,2,3\} i={1,2,3} j = { α , β , δ } j = \{\alpha, \beta, \delta\} j={α,β,δ} r ⃗ i 1 \vec{r}_{i1} r i1决定了解决方案在当前解决方案与目的地之间空间中的下一个位置。 r ⃗ i 2 ∈ [ 0 , 2 π ] \vec{r}_{i2} \in [0,2\pi] r i2[0,2π],定义了向目的地移动或远离目的地的距离。 r ⃗ i 3 \vec{r}_{i3} r i3赋予目的地随机权重,以便在定义距离时随机加强( r ⃗ i 3 > 1 \vec{r}_{i3} > 1 r i3>1)或削弱( r ⃗ i 3 < 1 \vec{r}_{i3} < 1 r i3<1)目的地的影响。最后,参数 r ⃗ i 4 \vec{r}_{i4} r i4是[0,1]之间的随机数,控制正弦和余弦分量的选择。然后,对于每个搜索代理的位置更新,我们应用Levy飞行策略使狼群接近这三位领导者,即:

其中 W k → ( ℓ + 1 ) \overrightarrow{W_k}(\ell+1) Wk (+1) 是第 k k k 个 ω 狼在第 ( ℓ + 1 ) (\ell+1) (+1) 次迭代中的位置, r 5 r_5 r5 是 [0,1] 范围内的随机值。 a a a 是步长缩放因子。 ⊕ \oplus 表示元素间的乘法。 L e υ y ( β ^ ) Le\upsilon y(\hat{\beta}) Leυy(β^) 是服从 Levy 分布的随机步长,通过 L e v y ( β ^ ) = u ∣ v ∣ 1 β ^ \begin{aligned}\boldsymbol{Levy}(\hat{\beta})&=\frac u{|v|^{\frac1{\hat{\beta}}}}\end{aligned} Levy(β^)=vβ^1u 计算得出。 u ∼ N ( 0 , σ u 2 ) u \sim N(0,\sigma_u^2) uN(0,σu2) v ∼ N ( 0 , σ v 2 ) v \sim N(0,\sigma_v^2) vN(0,σv2),其中 σ v 2   =   ( Γ ( 1 + β ^ ) s i n ( π β ^ 2 ) Γ ( 1 + β ^ 2 ) β ^ ⋅ 2 β ^ − 1 2 ) 1 β ^ , \begin{aligned}\sigma_v^2~=~(\frac{\Gamma(1+\hat{\beta})sin(\frac{\pi\hat{\beta}}{2})}{\Gamma(\frac{1+\hat{\beta}}{2})\hat{\beta}\cdot2^{\frac{\hat{\beta}-1}{2}}})^{\frac{1}{\hat{\beta}}},\end{aligned} σv2 = (Γ(21+β^)β^22β^1Γ(1+β^)sin(2πβ^))β^1, σ u 2 = 1 \sigma_u^2 = 1 σu2=1 β ^ ∈ ( 0 , 2 ] \hat{\beta} \in (0,2] β^(0,2] .

根据上文介绍的位置更新方程和帕累托优势原理,不同的解可以进行比较,以获得非支配帕累托最优解。获得的非支配解将被存储在存档中。值得注意的是,存档的容量是有限的,且容量大小是一个固定值。在迭代过程中,获得的新的非支配解将与存档中的解进行比较以更新存档。如果存档中没有空间,且新解支配了存档中的一个或多个解,则我们将启动网格机制,删除当前存档中的一个或多个解,以腾出空间存储新解。网格机制用于根据解的价值密度将目标空间划分为几个段。然后,我们将优先考虑最集中的段落,并从该段中提取并删除解决方案,以提供存储新解的空间。如果存档中有空间存储新解决方案,只有当新解决方案支配存档中的一个或多个解时,新解决方案才能成为存档的成员。还有一种特殊情况是新添加的解决方案位于所有段之外。那么,网格将被更新以包含新解决方案。

我们还需要通过比较解决方案来选择最佳领导者。为了避免在多目标搜索空间中选择与三位领导者相同的解决方案,我们使用领导者选择机制来寻找三个不同的领导者。如前所述,我们已经有一个存档,里面存放了到目前为止获得的非支配解。在网格机制将目标空间划分为几个段落后,领导者选择机制将采用轮盘赌方法,在最不集中的段落中选择一个解作为三位领导者之一,该段落具有最分散的函数值。如果最不集中的段落中的解决方案少于三个,则会寻找次不集中的段落来选择其他领导者,直到找到三个不同的领导者。因此,领导者选择机制防止了算法为α、β或δ狼选择相似领导者来更新 ω 狼的位置。
所提出的 LSCMGA 的伪代码显示在算法3中。

D. 整体算法设计与复杂度分析

提出的 ImMOGWO 算法的整体过程如算法 4 所示。我们的算法旨在通过优化无人机(UAV)的数量、三维位置和速度,以实现良好的覆盖率和低能耗。首先,基于移动地面用户(GU)的分布,我们设计了 RD 算法对地面用户进行聚类,为无人机的数量和位置初始化做准备。接着,由于优化变量的多样性,我们提出了 HSI 算法来初始化所有变量,以提高算法的收敛效果。此外,我们应用 LSC 方法在LSCMGA算法中避免局部最优并加速收敛。考虑到每个时间段用户的移动性,上述三部分将在每个时间段优化无人机的部署位置。由于RD算法和HSI算法克服了随机初始化造成的缺点, ImMOGWO 算法的收敛速度相对较快,这也表明提出的 ImMOGWO 算法具有良好的收敛性能。我们提出的算法不仅可以应用于本文中的多无人机部署场景,还可以应用于移动边缘计算中无人机作为边缘服务器的通信和位置优化场景。

N G U N_{GU} NGU 表示GU(基站用户)的数量, N c N_c Nc 表示簇的数量。单个时间槽中RD(资源分配)的计算复杂度为 O ( N i t ⋅ N G U ⋅ N c ) O(N_{it} \cdot N_{GU} \cdot N_c) O(NitNGUNc),其中 N i t N_{it} Nit 是收敛所需的迭代次数。当变量数量为 n v n_v nv 时,单个时间槽中HSI(互联网卫星)的计算复杂度为 O ( n v ⋅ K ) O(n_v \cdot K) O(nvK),其中 K K K 是无人机的数量。设 k k k N p N_p Np 分别表示优化目标的数量和种群大小。当帕累托存档的大小与种群 N p N_p Np 相同时,LSCMGA算法中对帕累托存档中的 N p N_p Np 个解进行排序的计算复杂度为 O ( k ⋅ N p ⋅ log ⁡ ( N p ) ) O(k \cdot N_p \cdot \log(N_p)) O(kNplog(Np))。因此,所提出的 ImMOGWO 在 N T N_T NT 个时间槽期间的整体计算复杂度为 O ( N T ( N i t ⋅ N G U ⋅ N c + n v ⋅ K + k ⋅ N p ⋅ log ⁡ ( N p ) ) ) O(N_T (N_{it} \cdot N_{GU} \cdot N_c + n_v \cdot K + k \cdot N_p \cdot \log(N_p))) O(NT(NitNGUNc+nvK+kNplog(Np)))

5. 仿真实验

本节中,进行了仿真实验以评估所提出的 ImMOGWO 在解决所构建的 CUEMOP 问题上的性能。

A. 仿真设置

在本研究中,监控区域被设定为 500 米× 500 米。基站用户(GU)的数量为 100 ,随机分布在监控区域内。 GU 的移动速度在每个时间槽内从 [1,15]米/秒(m/s)[37]中随机选择。时间槽的数量设为 N T = 100 N_T = 100 NT=100 ,每个时间槽为1秒。所有无人机(UAV)的起始点坐标设为(0,0,0)。无人机装备有M = 6个天线[32]。无人机的最小和最大飞行高度( h U min h_{U_{\text{min}}} hUmin h U max h_{U_{\text{max}}} hUmax)分别设为50米和300米[7]。关于仿真中无人机的其他参数显示在表 III中。

  • 20
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值