论文研读_一种针对大规模稀疏多目标优化的多粒度聚类进化算法(MGCEA)
- 此篇文章为Amulti-granularityclusteringbasedevolutionaryalgorithmforlarge-scale
sparsemulti-objectiveoptimization的论文学习笔记,只供学习使用,不作商业用途,侵权删除。并且本人学术功底有限如果有思路不正确的地方欢迎批评指正!
1 引言
在众多科学和工程领域中,优化问题通常以多目标和稀疏最优解为特征,这些问题统称为稀疏多目标优化问题(SMOPs)。由于不存在一个单一的解决方案能同时优化所有相互冲突的目标,因此针对SMOPs,预期会有多个折衷解决方案,即帕累托最优解。帕累托集包含了SMOP决策空间中的所有帕累托最优解,而帕累托前沿则在目标空间中代表这些解决方案。
SMOPs的一个显著特征是它们的帕累托最优解的稀疏性,其中大多数决策变量为零。作为SMOPs的一个代表性例子,投资组合优化问题模拟了投资者在大量候选投资中构建投资组合,以最大化预期回报并最小化潜在风险。由于投资者只能管理有限数量的投资,代表投资组合的解决方案中的决策变量主要为零,即大多数投资被忽略。SMOPs在许多其他情境中也很普遍,包括寻求建立稀疏重构信号以最小化模型的复杂性误差的信号重构问题,以及旨在通过破坏少量节点以在图中造成更大破坏的关键节点检测问题。由于大多数SMOPs在现实世界场景中依赖大规模数据集,它们具有大量决策变量,被称为大规模SMOPs。
近年来,为解决大规模优化问题,出现了许多多目标进化算法(MOEAs),这些算法基于变量分组、问题转换、新变异操作和概率模型。这些MOEAs从多种角度接近高维决策空间,包括基于变量分组的MOEAs的分而治之搜索、基于问题转换的MOEAs的降维、基于新变异操作的MOEAs的旋转不变性以及通过基于概率模型的MOEAs增强收敛性。然而,在仅使用少数函数评估时,它们在大规模SMOPs上的性能会恶化,因为这些算法没有考虑SMOPs最优解的稀疏性。通常,通过随机搜索准确找到大多数决策变量的最优值几乎是不可能的;相反,确定哪些决策变量应直接设为零是可行的。
为了实现这一目标,一些MOEAs最近被定制用于通过新的搜索策略识别零变量。基于双层编码方案,这些算法优化一个二进制向量来搜索零变量,以及一个实数向量来寻找非零变量的最优值。这样,实数向量的优化就变成了一个小规模优化问题,可以容易地由通用策略处理。此外,二进制向量的优化仍然是一个大规模的二进制优化问题,通过非均匀变异操作和降维策略来解决。尽管如此,稀疏多目标优化的发展仍处于初级阶段,因为非均匀变异操作还不够有效,降维策略也耗时。因此,本文提出了一种多粒度变量聚类方法,用于高效优化二进制向量,其主要贡献概述如下:
- 提出了一种多粒度变量聚类方法。在优化之前,该方法通过多区间采样将所有决策变量分类为非关键变量和关键变量,其中非关键变量可能为零,而关键变量则不会。在每一代中,该方法将所有决策变量分为具有不同零概率的多个层次。通过在优化过程中逐渐增加层数,可以在早期世代更有效地探索决策空间,在后期世代更好地利用决策空间。
- 提出了一种非均匀交叉操作符和层变异操作符。交叉操作符根据两个父代解的稀疏度确定每个二进制变量的值,稀疏度更高的父代更有可能被选中,从而确保后代的稀疏性。依赖于聚类结果,变异操作符同时以不同的概率翻转每层的二进制变量,当层数较少时可以全局减少种群的稀疏性,当层数较多时可以局部微调稀疏种群。
- 基于所提出的聚类方法、交叉操作符和变异操作符,开发了一种多粒度聚类的进化算法,简称为MGCEA。根据在八个基准SMOPs和七个具有100至5000决策变量的真实世界SMOPs上的实验,所提出的MGCEA与最先进的算法相比显示出卓越的有效性。
本文的其余部分安排如下。第2节介绍了与稀疏多目标优化相关的基本概念、现有的稀疏MOEAs以及变量聚类方法,并阐述了本工作的动机。第3节详细描述了所提出的算法。第4节在基准和真实世界的SMOPs上进行了比较实验。最后,第5节提供了结论和未来工作的展望。
2 相关工作
2.1 稀疏多目标优化
无约束多目标优化问题可以在数学上定义为
其中 𝐱 表示包含 𝑑 决策变量的解, 𝐹(𝐱) 表示包含 𝑚 目标值的目标向量。如果解 𝐱 和解 𝐲 满足 𝑓𝑖 (𝐱) ≤ 𝑓𝑖 (𝐲) 对于每个 𝑖 ∈ {1,…, 𝑀 } 且 𝑓𝑖 (𝐱) < 𝑓𝑖 (𝐲) 对于至少一个 𝑗 ∈ {1, …, 𝑀 },据说𝐱支配𝐲。
求解方程的目标(1) 是寻找一组多样化的 Pareto 最优解,该解不受决策空间 中任何解的支配。
如果决策变量的数量 ( d ) 超过100,上述问题被称为大规模多目标优化问题(LMOP),如果大多数决策变量需要优化为零,则称为SMOP。尽管现有的MOEAs能够妥善解决LMOPs和SMOPs,但在许多真实世界场景中,解决大规模SMOPs更为困难。首先,在解决LMOPs时需要消耗大量的函数评估[8],但在解决许多真实世界场景中的SMOPs时,这是无法承受的。其次,通用变异操作符在解决SMOPs时能找到一些零变量,但它们遇到了维度的诅咒,在生成具有许多零变量的解决方案时效果不佳[6]。因此,为了在高维决策空间中寻找稀疏最优解,已经定制了新策略,将其整合的进化算法被称为稀疏MOEAs。
2.1 代表性稀疏 MOEA
SparseEA [1] 是稀疏 MOEA 的前身,其主要贡献是用于寻找稀疏解的双层编码方案。具体来说,它用二元向量 𝐛 = (𝑏1 , 𝑏2 , …, 𝑏𝑑 ) ∈ {0, 1}𝑑 和实数向量 𝐫 = (𝑟1 , 𝑟2 , …, 𝑟𝑑 ) ε 𝛺 在总体中,其中 𝑥𝑖 = 𝑏𝑖 × 𝑟𝑖 对于 𝑖 = 1, …, 𝑑。虽然这种编码方案最初用于处理特定的稀疏优化问题,如神经网络训练 [20] 和投资组合优化 [21],但它被 SparseEA 继续用于解决黑盒 SMOP。实向量𝐫表示决策变量的值,并通过一般变分算子(例如,模拟二元交叉[22]和多项式变异[23])进行优化,二元向量表示每个决策变量是否为零或非零并进行优化通过新的交叉和变异算子。更具体地说,预先计算每个决策变量的分数以估计为零的概率,并且新的交叉和变异算子通过基于决策变量的分数使用二元锦标赛选择来翻转二元变量。此后,基于新的变分算子和降维策略的稀疏MOEA相继被开发出来。
稀疏MOEAs的第一类建议了新的变异操作符,以提高搜索效率。由于SparseEA计算的得分在优化过程中是恒定的,RSMOEA [24] 提出了一个动态引导向量,根据当前种群的二进制向量进行迭代更新。为了挖掘更多有用信息,MSKEA [25] 设计了三种动态知识,而不是单一的一种。其中,第一种知识是从初始种群捕获的先前引导向量,第二种知识是从当前种群捕获的过滤引导向量,第三种知识是从所有历史种群捕获的统计引导向量。通过动态整合这三个向量到二进制变异操作符中,MSKEA可以更准确地估计每个变量为零的概率。为了处理具有多模态景观的SMOPs,MP-MMEA [26] 发展了多个子种群,每个子种群都与一个不同的引导向量相关联。这些引导向量不仅可以区分子种群的搜索方向,还可以驱动子种群向不同的等效帕累托最优集合收敛。此外,一些稀疏MOEAs提出了新的不包含得分或向量的变异操作符,例如SparseEA2 [27] 的非均匀变异操作符,S-ECSO [28] 的强凸稀疏操作符,以及S-NSGA-II [29] 的稀疏模拟二元交叉和稀疏多项式变异。
稀疏MOEAs的第二类通过降维和变量聚类减少决策变量的数量。 MOEA/PSL [18] 使用限制性玻尔兹曼机从当前种群的二进制向量 b 学习稀疏分布,并使用去噪自编码器从当前种群的实数向量 r 学习紧凑表示。学到的稀疏分布和紧凑表示形成了一个准最优子空间,其维度远少于原始决策空间,从而大大提高了生成稀疏解的有效性。 PMMOEA [19] 提出了一种进化模式挖掘方法,根据当前种群检测非零变量的最大和最小候选集,并使用它们限制后代生成中的维度。与 MOEA/PSL 的特征提取思想相比,PMMOEA中的特征选择思想是无参数的,也不那么贪婪。为了处理具有计算成本高的目标的SMOPs, MDR-SAEA [30] 使用基于非支配排序的特征选择方法检测非零变量,因此只有非零变量的子问题比原问题更容易通过替代模型近似。为了从数百万决策变量中找到稀疏向量, SLMEA [31] 开发了一种快速聚类方法,显著减少了决策变量的数量,其中每个组中的单个二进制变量而不是所有二进制变量都被优化。SLMEA的变量聚类方法相当贪婪,因为它极端追求效率而不是有效性。类似地, DSGEA [32] 根据当前种群中的稀疏性对二进制变量进行分组,其中一组二进制变量从父代解中随机选择并变异以生成后代解。
可以发现,变量聚类作为解决 SMOPs 的一个有前景的想法。事实上,已经有许多基于变量聚类的 MOEAs 专门用于解决 LMOPs ,其中一些代表性的作品将在下一小节中回顾。
2.3 用于大规模多目标优化的变量聚类
解决 LMOP 的第一个想法是决策变量的随机分组。例如,CCGDE3[7]将所有决策变量随机分为预定数量的大小相等的组,其中不同组中的变量以分而治之的方式交替优化。这样,决策空间的维数就隐式减少了。为了避免忽略全局最优,CCLSM[33]通过使用差分分组来划分所有决策变量,其中所有相互作用的变量被分组到同一组中,从而在缩小的决策空间中保持帕累托最优解。此外,还有其他类型的变量分组方法,例如有序分组[9]和基于皮尔逊相关性的分组[34]。
虽然决策变量交替优化过程中不能保证种群多样性,MOEA/DVA[35]提出了一种控制变量分析方法,将所有决策变量分为位置变量、距离变量和混合变量。位置和混合变量的扰动主要影响解在帕累托前沿的位置,因此这些变量通过偏好种群多样性的选择策略进行优化。另一方面,距离变量的扰动主要影响解到帕累托前沿的距离,因此这些变量通过优先群体收敛的选择策略进行优化。
为了增强处理复杂景观的鲁棒性,LMEA[8]提出了一种变量聚类方法,根据从变量扰动中提取的特征,通过𝐾均值聚类,将所有决策变量分为收敛相关变量和多样性相关变量。解决方案。后来,一些其他变量聚类方法也得到了发展,例如重新表述的决策变量分析[36]和局部决策变量分析[37]。
尽管变量聚类在 LMOP 上很有效,但它工作在连续决策空间中,并且不适合划分 SMOP 的二元向量。更严重的是,决策变量的交替优化消耗了大量的函数评估,这在实际处理 SMOP 时是难以承受的。总的来说,LMOP 的变量聚类方法与 SMOP 的变量聚类方法不同,前者的目标是分而治之,而后者的目标是降维。
2.4 动机
现有的稀疏 MOEA 基于两个主要思想生成后代解决方案。如图 1(a)所示,第一个想法根据为零的概率翻转单个二元变量,该概率是根据从初始群体和当前群体估计的引导向量计算的。如图 1(b)所示,第二种想法将二元变量分为多个组,并翻转随机选择的组中的所有二元变量。显然,第一个想法更喜欢利用,因为每次只更改一个或几个二进制变量,而第二个想法更喜欢探索,因为随机选择的一组二进制变量同时更改。
为了在开发和探索之间取得更好的平衡,如图 1(c)所示,所提出的算法旨在将二进制变量划分为多个层而不是等价组,其中各层为零的概率不断增加。因此,要翻转的层是启发式选择的,而不是随机选择的。这个想法并不简单,因为需要考虑一些关键问题,包括层数的确定、二元变量的聚类以及为零概率的计算。因此,该算法提出了一种多粒度变量聚类方法,可以自适应地解决上述问题,以辅助稀疏最优解的逼近。
3 提出的算法
3.1 MGCEA 程序
所提出的基于多粒度聚类的进化算法(MGCEA)的流程如图 2 所示,其中三个新颖的组件构成了 MOEA 的总体框架。第一个组成部分是多区间抽样,它生成初始总体并将所有决策变量分为非关键变量和关键变量以进行进一步聚类。第二个组成部分是多粒度聚类,它将所有决策变量划分为不同数量的层,其为零的概率不断增加。第三个组成部分是交叉和变异算子,它们根据解的稀疏性和聚类结果生成后代解。这些新组件协作生成稀疏解决方案,在开发和探索之间实现动态平衡,以提高效率。
- MGCEA主程序的伪代码在算法1中呈现,它从提出的多区间采样开始,用于生成 ( N ) 个初始解并划分所有决策变量(第1行)。
- 在每一代中,首先从当前种群 ( P ) 中选出 ( 2N ) 个父代解,使用SPEA2 [38] 的交配选择策略(第4行),即基于支配关系和欧几里得距离测量的适应度的二元锦标赛选择。
- 然后,使用提出的多粒度聚类方法,将所有决策变量划分为若干层(第5行)。
- 聚类结果指导后代种群 ( Q ) 的生成,通过所提出的交叉和变异操作符实现(第6行)。
- 之后,将后代种群 ( Q ) 与当前种群 ( P ) 结合,使用SPEA2的环境选择策略保留 ( N ) 个解(第8行),即基于支配关系和截断的选择。
- 最后,在所有函数评估耗尽后,返回 ( P ) 作为输出。
在以下小节中,将详细阐述MGCEA的三个新颖组成部分。
3.2 多区间采样
所提出的多间隔采样将所有决策变量分为非关键变量和关键变量,其中前者更有可能为零,后者更可能非零。此外,在此过程中生成的所有解构成一个初始种群。如算法 2 所述,使用一个向量 𝑆𝑐𝑜𝑟𝑒 来表示决策变量为零的概率,该向量是通过对每个决策变量在 𝑁𝑉 𝑎𝑙 个区间内的扰动构建的。具体来说,决策空间 Ω 沿每个维度被均等划分为 𝑁𝑉 𝑎𝑙 个区间,并为每个区间生成一个矩阵 𝑅 ∈ R𝑑×𝑑 ,其第 𝑖 列的元素是在第 𝑚 个区间内随机采样得到的。
其中 𝑙𝑜𝑤𝑒𝑟𝑖 和 𝑢𝑝𝑝𝑒𝑟𝑖 分别是第 𝑖 个决策变量的下界和上界。获得每个区间的 𝑅 之后,生成一个 𝑑×𝑑 的单位矩阵 𝐵 ,并得到一个矩阵 𝑋 ∈ R𝑑×𝑑 ,其中 𝑋𝑗𝑖 = 𝑅𝑗𝑖 × 𝐵𝑗𝑖 。具体来说,每个解的实数向量元素被设置为随机值,而二进制向量掩码的元素被设置为 0 ,除了掩码中第 𝑖 个解的第 𝑖 个元素被设置为 1 。通过这种方式,通过选择 𝑋 的每一行作为一个解,得到一个种群 𝑄 ,其中第 𝑖 个解仅在第 𝑖 维度上包含单个非零变量。之后, 𝑄 中的 𝑑 个解通过 非支配排序[39] 进行排序,所有解的非支配前沿数字存储在 𝑆𝑐𝑜𝑟𝑒 中。因此,一个决策变量的分数表明它应该被设置为 零 的概率,其中更高的分数可能表明该决策变量应该被设置为 非零 的概率更大,因为更高的非支配前沿数字表明解的质量更差,反之亦然。
值得注意的是,虽然现有的稀疏多目标进化算法(MOEAs)[1,25] 中已提出计算 𝑆𝑐𝑜𝑟𝑒 的方法,但在所提出的 MGCEA 中计算 𝑆𝑐𝑜𝑟𝑒 的思路本质上有所不同。首先,现有的 MOEAs 是基于在整个决策空间采样的单一种群来计算 𝑆𝑐𝑜𝑟𝑒 ;相比之下, MGCEA 在每个 𝑁𝑉 𝑎𝑙 区间内采样 𝑆𝑉 𝑎𝑙 个种群,并根据所有 𝑆𝑉 𝑎𝑙 × 𝑁𝑉 𝑎𝑙 种群的排序结果累积 𝑆𝑐𝑜𝑟𝑒 。显然,对不同区间中更多解的采样可以更好地减轻随机性的影响,从而更准确地估计变量为 零 的概率。其次,在现有的MOEAs中, 𝑆𝑐𝑜𝑟𝑒 指导子代生成,但在 MGCEA 的初始化步骤中,它被用来识别 非关键 和 关键变量。
更具体地说, MGCEA 使用 𝐾 均值方法根据 𝑆𝑐𝑜𝑟𝑒 将所有决策变量分为两组,其中 𝑆𝑐𝑜𝑟𝑒 值较小的变量组是关键的, 𝑆𝑐𝑜𝑟𝑒 值较大的变量组是非关键的。算法 2 的输出是一个向量 𝑇 𝑦𝑝𝑒 ,表示每个变量是否关键,其中 𝑇 𝑦𝑝𝑒𝑖 = 1表示第 𝑖 个变量是关键的且更可能非零,而 𝑇 𝑦𝑝𝑒𝑗 = 0 表示第 𝑗 个变量是 非关键的 且更可能为 零 。与为所有变量分配不同的 𝑆𝑐𝑜𝑟𝑒 值相比,使用 𝑇 𝑦𝑝𝑒 大致将所有变量分为两组,在优化过程中进一步划分,这减少了贪婪性,因为认为初始化步骤中获得的 𝑆𝑐𝑜𝑟𝑒 与最优稀疏分布存在差异。
3.3 多粒度聚类
在每一代生成后代解之前,所提出的多粒度聚类被用来将所有决策变量划分为多个层次,这些层次中变量变为零的概率逐渐增加。根据算法3,首先基于当前种群计算每个变量的 稀疏度 :
在这里, 𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦𝑖 指的是第 𝑖 个变量的稀疏度,而 𝑝𝑏𝑖 是种群 𝑃 中解 𝐩 的二进制向量中的第 𝑖 个变量。接着,所有决策变量按照 𝑇𝑦𝑝𝑒 + 𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 的降序排列,其中 𝑇𝑦𝑝𝑒 ∈ {0, 1}𝑑 作为主要因素, 𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 ∈ [0, 1]𝑑 作为次要因素。基于决策变量的排名,它们被划分为大小相等的多个层次,层次的大小是自动确定的,其中 |𝑇𝑦𝑝𝑒| 表示向量中 1 的数量, 𝜆 是已消耗评估的比率。算法 3 的输出是一系列层次 𝐿𝑎𝑦𝑒𝑟𝑠 ,其中前面层次的变量更有可能 非零 ,而后面层次的变量更可能为 零 。此外,为了减轻计算负担,当消耗的函数评估次数的 十分之一 时,执行算法 3 。
所提出的 MGCEA 在变量聚类中涉及到两个因素: 𝑇𝑦𝑝𝑒 和 𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 。其中, 𝑇𝑦𝑝𝑒 是提前获得的,用于大致将所有变量分为两组;而 𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 则在每一代更新,以便更细致地区分变量。
多粒度聚类的新颖之处在于两个方面:首先,变量的划分是根据 𝑇𝑦𝑝𝑒 + 𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 的降序排列,而不是它们之间的 相似性 ,从而产生 多个层次 而 非群组 。对于后代生成,获得的层次不仅减少了决策空间的维度,而且指导二进制向量的优化,因为不同层次的变量变为 零 的概率各不相同。其次,随着已消耗评估的比率 𝜆 的增加,层次的大小逐渐减小,因此可以在早期代更有效地探索决策空间,在后期代更好地利用它。例如,在解决具有 1000 个变量和 0.1 稀疏度的 SMOPs 时,每层的决策变量数量将从 100 减少到 1 ,这可以通过翻转拥有许多变量的层,在早期代快速逼近有前景的区域,并且可以在后期代通过翻转只有少数变量的层,精细调整有前景的解决方案。
3.4 交叉和变异算子
基于聚类结果,所提出的 MGCEA 推荐使用 非均匀交叉算子 和 层变异算子 来生成后代解决方案的 二进制向量 ,并采用 常规算子 生成后代解决方案的 实数向量 。如算法 4 所述,每次生成一个后代解决方案时,会从配对池中随机选择两个父代解 𝐩 和 𝐪 。所提出的 非均匀交叉 将后代的二进制向量 𝐨𝐛 设置为与其中一个父代二进制向量 𝐩𝐛 相同,然后按照以下概率将 𝐨𝐛 的每个变量设置为与另一个父代二进制向量 𝐪𝐛 相同:
因此,如果 𝐩𝐛 比 𝐪𝐛 更稀疏,变量被翻转的可能性就会降低,反之亦然。
以 𝐩𝐛 = (1, 0, 0, 0, 0) 和 𝐪𝐛 = (1, 0, 1, 1, 1) 为例,当使用 均匀交叉 时, 𝐨𝐛 中变量为 1 的概率是 1, 0, 0.5, 0.5, 0.5 ;而使用所提出的 非均匀交叉 时,这些概率分别是 1, 0, 0.2, 0.2, 0.2 。这样,后代解决方案的稀疏性就可以得到保证。
提出的层变异接着在 𝐨𝐛 上进行,其中 𝐨𝐛 的二进制变量逐层更新。具体来说,索引 𝑃𝑜𝑖𝑛𝑡𝑈𝑝 初始化为 1 ,索引 𝑃𝑜𝑖𝑛𝑡𝐷𝑜𝑤𝑛 初始化为 |𝐿𝑎𝑦𝑒𝑟| ,其中 𝑃𝑜𝑖𝑛𝑡𝑈𝑝 会逐渐增加,所有在 𝐿𝑎𝑦𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝑈𝑝 的变量变为 一 ,而 𝑃𝑜𝑖𝑛𝑡𝐷𝑜𝑤𝑛 会逐渐减小,所有在 𝐿𝑎𝑦𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝐷𝑜𝑤𝑛 的变量变为 零 。这与层级变为 零 的概率逐渐增加的事实是一致的。在每次迭代中,变异算子以 0.5 的概率或者 𝑃𝑜𝑖𝑛𝑡𝑈𝑝 > 𝑃𝑜𝑖𝑛𝑡𝐷𝑜𝑤𝑛 的条件终止,否则它执行以下两个操作之一,且概率相同:
-
从𝐿𝑎𝑦𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝑈𝑝中选出一半在 𝐨𝐛 中为 0 的变量,将这些变量设为 1 ,并将 𝑃𝑜𝑖𝑛𝑡𝑈𝑝 增加 1 。
-
从𝐿𝑎𝑦𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝐷𝑜𝑤𝑛中选出一半在 𝐨𝐛 中为 1 的变量,将这些变量设为 0 ,并将𝑃𝑜𝑖𝑛𝑡𝐷𝑜𝑤𝑛减少1。
通过这样做,可以根据层级的排名同时翻转多个变量,其中排名与变为 0 的概率正相关。最后,后代实数向量 𝐨𝐫 通过基于父代实数向量 𝐩𝐛 和 𝐪𝐛 的模拟二进制交叉[22]和多项式变异[23]生成,由此产生了由 𝐨𝐛 和 𝐨𝐫 构成的后代解决方案。
4 实证研究
在本节中,我们对提出的 MGCEA 进行了测试,测试对象包括八个基准问题 SMOP1 至 SMOP8 [1] ,以及三个实际的 SMOP ,分别是投资组合优化(PO)[3]、稀疏信号重构(SR)[40]和关键节点检测(CN)[5]。选定 WOF [9] 、 LMOCSO [41] 、 PMMOEA [19] 、 MSKEA [25] 和 S-NSGA-II [42] 作为基准算法,其中 WOF 和 LMOCSO 分别是基于 问题转换 和 竞争群体优化器 的代表性大规模多目标进化算法(MOEA),而 PMMOEA 、 MSKEA 和 S-NSGA-II 则是基于 降维 、 引导向量 和 新变异算子 的最新稀疏多目标进化算法。根据 2.2 节的分类法, PMMOEA 属于第二类,而 MSKEA 和 S-NSGA-II 属于第一类。所有的对比实验和剖析研究都在 PlatEMO [43]平台上进行。
4.1 算法设置
变异算子。在为后代解生成实数决策变量时, WOF 、 PMMOEA 、 MSKEA 以及提出的 MGCEA 使用 模拟二元交叉[22] 和 多项式变异[23] ,其中交叉概率设为 1 ,变异概率设为 1/𝑑 ,分布指数设为 20 。 LMOCSO 和 S-NSGA-II 使用它们自己的遗传算子来生成后代解的决策变量。在为后代解生成二进制决策变量时, PMMOEA 、 MSKEA 和 MGCEA 使用它们自己的交叉和变异算子。此外, WOF、 LMOCSO 和 S-NSGA-II 在 [0, 1] 区间内生成实数变量,并将其四舍五入以获得二进制变量。
种群大小和终止条件。按照通常设置,所有算法在基准问题和实际问题上的种群大小均设为 100 。作为终止条件,采用的是函数评估的最大次数,这在基准问题上设为 100×𝑑 ,在实际问题上设为 20,000 。
其他参数。比较算法的参数设置与它们原始论文中的一致。对于 WOF ,群组数量设为 4 ,原始问题的评估次数设为 1000 ,转换后问题的评估次数设为 500 ,用于权重优化的解的数量设为 3 ,权重优化的评估比例设为 0.5 。对于 LMOCSO ,罚分参数设为 2 。对于 PMMOEA ,模式挖掘的种群大小设为 20 ,模式挖掘的代数设为 10 。对于提出的 MGCEA ,区间数 𝑁𝑉 𝑎𝑙 设为 5 ,每个区间的采样数 𝑆𝑉 𝑎𝑙 设为 2 。
4.2 问题设置
基准问题和实际问题的详细参数设置列于表 1 中,其中目标数量 𝑚 为 2 ,决策变量数量 𝑑 从 100 变化到 5000 ,帕累托最优解的稀疏度设为 0.1 。基准问题 SMOP1 至 SMOP8 呈现了包括多模态性、欺骗性、上位性和低内在维度等各种难题,而实际问题则引入了具有实数决策空间(PO1至PO4、SR1至SR4)和二进制决策空间(CN1至CN4)的复杂景观。这些问题的详细定义可在 [1,18] 中找到。
在性能指标方面,使用反向世代距离(IGD)[44] 来评估基准问题上的种群质量,其中大约 10,000 个参考点用于 IGD 计算,这些参考点是通过 [45] 中建议的方法在真实的帕累托前沿上均匀采样得到的。另一方面,使用超体积(HV)[46] 来评估实际问题上的种群质量,其中 HV 计算的参考点设为(1, 1)。使用 Wilcoxon 秩和检验,显著性水平设为 0.5 ,对每个比较算法和提出的 MGCEA 进行统计分析,分析基于每个测试实例的 30 次独立运行,其中 ‘+’ 表示算法显著优于 MGCEA , ‘−’ 表示算法显著劣于 MGCEA , ‘=’ 表示算法与 MGCEA 在统计上相似。