论文研读_一种基于双重分解和子集选择的多模态多目标进化算法(MMOEA/DS2)

本文研读了基于双重分解和子集选择的多模态多目标进化算法(MMOEA/DS2)。多模态多目标问题中多样性保持是关键,现有方法存在不足。MMOEA/DS2利用双重分解和子集选择,能在目标和决策空间保持平衡多样性,文中还介绍其框架、策略,并通过实验与其他算法对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文研读_一种基于双重分解和子集选择的多模态多目标进化算法(MMOEA/DS2)

  • 此篇文章为A multi-modal multi-objective evolutionary algorithm based on dual
    decomposition and subset selection
    的论文学习笔记,只供学习使用,不作商业用途,侵权删除。并且本人学术功底有限如果有思路不正确的地方欢迎批评指正!

提要

在现实世界的应用中,多模态多目标问题(MMOPs)经常出现,其中多个帕累托最优解集(PSs)对应于帕累托前沿(PF)上的同一点。在多模态多目标进化算法(MMOEAs)中,多样性保持是一个关键问题,其目标是使种群向 PF 和等价 PSs 演化,同时保持均匀分布和良好扩散。尽管在 MMOEAs 中存在许多多样性保持方法,但大多数方法在保证决策空间多样性的同时,却降低了目标空间的性能。为了解决上述问题,本文提出了一种基于双重分解和子集选择的多模态多目标进化算法(MMEA),该算法利用权重向量和网格来分解目标空间和决策空间。在双重分解的基础上,根据当前子问题的估计优化阶段,适应性地进行配对选择。此外,在进化过程中收集到的有前景的解决方案中,选择一个在目标空间和决策空间都具有良好多样性的子集。对 22 个基准问题的实验结果表明,我们的方法能够在目标空间和决策空间中保持更平衡的多样性。

1. 摘要

多目标优化问题(MOPs)指的是需要同时优化多个相互冲突目标的问题。通常而言,一个最小化的多目标优化问题可以按照以下方式构建:

在这里, F ( x ) F(x) F(x) 是一个需最小化的M维目标函数,而 x x x 是决策空间 Ω \Omega Ω 中的 N 维决策向量。如果对于所有的 a = 1 , 2 , . . . , M a = 1, 2, ..., M a=1,2,...,M ,都有 f a ( x i ) ≤ f a ( x j ) f_a(x_i) \leq f_a(x_j) fa(xi)fa(xj) ,并且存在某个 b = 1 , 2 , . . . , M b = 1,2,...,M b=1,2,...,M,使得 f b ( x i ) < f b ( x j ) f_b(x_i) < f_b(x_j) fb(xi)<fb(xj) ,则认为解 x i x_i xi 帕累托支配另一个解 x j x_j xj 。任何不被其他解支配的解都是帕累托最优解。决策空间中所有非支配解的集合是帕累托最优集(PS),而在目标空间中相应的(M-1)维流形构成了该问题的帕累托前沿(PF)。
由于目标之间的冲突,没有一个解决方案能在所有目标上保持最佳性能。多目标进化算法(MOEAs)是基于种群的优化器,它们能够基于元启发式有效地探索问题空间,并为决策者提供一系列可供选择的权衡解决方案。因此,已经开发了各种类型的 MOEAs 来解决 MOPs 。通常,解决 MOPs 的目标是用一组广泛且均匀分布的解来逼近 PF 。换句话说,收敛性、扩散性和均匀性是评估解决 MOPs 性能的三个重要因素。

在这里, F ( x ) F(x) F(x) 是一个需要最小化的M维目标函数,而 x x x 是决策空间中的N维决策向量。最近,多模态多目标优化(MMO),通常指具有多个等价帕累托最优解集(PSs)的多目标优化问题(MOPs),在MOP研究中受到越来越多的关注。这类问题来源于实际问题,并且满足了获得多样化帕累托最优解的需求。多样化解决方案能够为决策者提供:

​ 1)更多信息来理解和分析问题空间;

​ 2)因不同资源选择而产生的各种计划;

​ 3)在紧急事件下快速切换到替代方案的能力。

如图1(a)所示,传统的多目标进化算法(MOEAs)被设计用来平衡目标空间中的收敛性和多样性。在进化过程中,适应度较差的解将被移除,以推动种群靠近帕累托前沿(PF)。对于具有多个等价PSs的问题,上述以收敛为首的选择压力最终会导致搜索空间中的多样性丧失,以及进化过程偏向于PSs的有限部分。此外,在目标空间中性能相对较弱的解决方案对于收敛来说可能无用,但可能是识别和定位等价 PSs(例如,图1(b)中的 x a x_a xa)的好“垫脚石”。

与多目标优化问题(MOPs)不同,进化多样性优化问题(EDOPs)关注的是搜索空间中解决方案的多样性。与传统的多目标进化算法(MOEAs)相比,进化多样性优化(EDO)算法的重点已经从奖励更好的解转变为奖励不同的解。例如,新颖性搜索完全忽略了问题的目标,而是试图提高当前种群的新颖性得分。惊喜搜索预估种群的近期进化趋势,并倾向于选择行为偏离预测的解决方案。 EDO 算法更多地被用作探索工具,而不仅仅是作为纯粹的优化工具。然而,决策空间中解决方案的多样化分布几乎不会促进目标空间中的多样性。多样性优先的策略可以充分探索EDOPs的搜索空间(如图 1 (d) ),而对多样化解决方案集的探索将导致接近帕累托前沿(PF)的能力下降(如图 1 © )。

总的来说,在处理多模态多目标优化问题(MMOPs)时,需要考虑两个关键的多样性平衡问题:一是收敛性与多样性之间的平衡,二是目标空间和决策空间中多样性之间的平衡。如图 1 (e) 所示,第一个关键问题与解决 MOPs 的目标相似。关于第二个目标,如图 1 (b) 和 (f) 所比较的,识别和定位多个 PSs ,同时在目标空间和决策空间保持平衡的多样性,使得 MMOPs 比 MOPs 更具挑战性。

现有最先进的多模态多目标进化算法(MMOEAs)中的多样性平衡方法大致可以分为三类。第一类基于帕累托支配关系,通过限制同一小生境内解决方案的竞争来避免偏向性的收敛。例如, Omni-optimizer [12] 同时考虑决策空间和目标空间中的多样性,以衡量每个解决方案的多样性程度。第二类利用选定的指标来引导搜索过程,如 MMEA-WI [13] 。然而,随着问题规模的增大,指标的计算负担呈指数级增长,这在一定程度上使得基于指标的搜索在大规模情况下不适用。

第三类的特点是对目标或决策空间进行分解。分区搜索 [14] 将整个搜索空间划分为多个子区域,以保持决策空间中的种群多样性。以分解为基础的多目标进化算法(MOEA)的代表性算法 MOEA/D [4] 提出了分解目标空间并同时解决子问题的理念,这一理念激发了一系列针对 MMOPs 的扩展。例如, MOEA/D-AD [15] 和 MOEA/D-ADA [16] 。与经典的 MOEA/D 相比,它们的扩展为每个子问题分配多个个体以定位等价解决方案,然后测量拥挤距离以形成小生境。然而,在整个搜索空间全局评估拥挤距离可能导致拥挤幻觉问题 [17]。由于决策空间和目标空间的分解在处理 MMOPs 上表现出竞争性能,因此同时分解目标和决策空间以进一步细分搜索空间并减少上述不利影响是合理的。

此外,大多数现有文献通过适应最终种群来描述目标空间中的 PF(帕累托前沿)和决策空间中的 PSs(解集)。从组合种群中选择有限的解需要在收敛性和多样性之间做出权衡,这可能导致收敛性丧失或多样性失衡。最近,子集选择技术已显示出其有效性,提供比原始算法的最终种群更多样化的解决方案 [18,19]。在这种方法中,使用外部存档来收集每一代中发现的所有有前景的解决方案。当达到终止标准时,存档被截断为预先指定数量的解决方案作为最终输出。
受到这些观察的启发,我们提出了一种基于双重分解和子集选择的多模态多目标进化算法(MMOEA/DS2),其框架与现有的MMOEAs不同。这项工作的贡献可以总结如下:

​ 1) 一种基于双重分解的技术,引导种群向有前景的区域发展;
​ 2) 一种交配选择策略,根据当前的优化状态适应性地选择父代;
​ 3) 用于外部存档和网格的更新策略,以提高搜索效率;
​ 4) 提供分布良好的最终解决方案的最终子集选择策略;
​ 5) 对 MMOEA/DS2 与最先进的 MMOEAs 进行严格比较,显示出 MMOEA/DS2 在解决 MMOPs 方面是有效和高效的。

在本文的其余部分,我们首先介绍本文的背景知识。在第 3 节中,详细描述了所提出的 MMOEA/DS2 。实验结果和讨论在第 4 节提出。最后,在第 5 节得出结论。

2. 基础知识

2.1 多模态多目标优化问题

作为多目标优化问题(MOPs)的一个分支,多模态多目标优化问题(MMOP)的基本数学模型与 MOP 相似。通过使用一种宽松的等价性, MMOP 定义如下[20]:

  1. 多模态多目标优化问题(MMOP)涉及寻找所有与帕累托最优解等价的解。
  2. 如果两个不同的解 x 和 y 满足条件 ‖ f(x)−f(y) ‖≤ ε ,则称它们在 ε 的精度水平下是等价的,其中 ‖ ⋅ ‖ 是两个解的任意范数; ε 是由决策者预先定义的非负阈值。识别并维持所有等价的帕累托最优解是 MMOPs 所期望的。

2.2 基于帕累托支配的多模态多目标进化算法

作为最具代表性的多模态多目标进化算法之一, Omni-optimizer [12] 引入了决策空间中的解决方案多样性,以改进拥挤距离的计算方式。受到 Omni-optimizer 的启发,各种多模态多目标进化算法考虑在决策空间中考虑解决方案的多样性,以在帕累托支配排序后定位等价的 PSs(解集)。例如,Wang 等人 [21] 将特殊的拥挤距离与最大扩展距离结合起来,以反映当前种群的分布状态。Liang 等人 [22] 将基于聚类的特殊拥挤距离嵌入到非支配排序方案中,通过 k-means 聚类寻找邻域关系。MMPICEAg [23] 利用一种双重多样性存档更新策略,迭代地从非支配解集中移除拥挤的解决方案。
上述努力试图在非支配排序后促进决策空间的多样性,这过分强调了解决方案的收敛性。在优化过程中,具有相对较差收敛性的解决方案可能有助于定位等价的 PSs 并跳出局部 PF [24]。在过去的两年里,研究人员越来越关注在进化过程中平衡收敛性和多样性。合作的收敛优先存档和面向多样性的存档被广泛用于实现平衡搜索 [25] 。Yue 等人 [26] 不是单独考虑每个帕累托等级,而是计算所有候选个体的特殊拥挤距离,并允许排名靠后的解决方案生存。

2.3 基于指标的多模态多目标进化算法

性能指标或评价指标被用于估计基于指标方法中解决方案的进化状态。通过这种方式,近似 PF 和 PSs 的目标因此转化为优化选定的性能指标。在文献 [13] 中,加性 ε 指标(I ε + )被扩展应用于解决 MMOPs ,通过将决策空间中解决方案的多样性信息整合到指标值计算中。根据决策者的优化偏好,Li 等人 [27] 采用了一个局部收敛质量指标,以获得全局和局部的 PSs 。在 RHEA [28] 中,局部收敛质量指标与环层次策略结合,以提高种群朝向不平衡和局部 PSs 的收敛性。

2.4 基于分解的多模态多目标进化算法

MOEA/D 类型的多目标进化算法(MOEAs),通过将原始问题分解为多个子问题,已经在多目标优化问题(MOPs)上展示了卓越的性能。因此,将基于分解的方法扩展到处理多模态多目标优化问题(MMOPs)是合理的。在MOEA/D-AD [15] 中,多个不同的解被分配给同一个子问题。并且,只有在决策空间中接近的解才会根据它们的标量化函数值进行比较。这个想法在文献 [16] 中被概括为一个框架,通过三个操作:分配、删除和添加,提高了基于分解的进化多目标算法(EMOAs)处理MMOPs的性能。在 TA&DF-COCD [29] 中,两个存档从非支配解中通过目标空间分解和适应度分配选择所需的解决方案。
另一种基于分解的多模态多目标进化算法是将决策空间划分为子区域,旨在引导种群向有希望的区域移动并形成生态位 [30] 。在文献 [31] 中,整个决策空间被划分为区域以定位等价的PSs。Li 等人 [32] 使用网格在决策空间中探索高质量的解决方案。Yang 等人 [33] 提出了决策子区域分配和多样性存档保存方法,以促进决策空间中解决方案的多样性。

3. 提出的方法

本节介绍了我们提出的算法 MMOEA/DS2。首先概述了算法的总体框架,随后详细描述了主要组成部分。

3.1. 总体框架

如图2所示,所提出的 MMOEA/DS2 算法通过网格 G 和外部存档 EA 的合作解决问题。具体来说:

  • 网格G,用于保留新颖的高性能解决方案,作为定位不同PSs的优化器;
  • 外部存档EA,用于存储在演化过程中发现的所有有前景的解决方案,作为历史有希望位置的记忆和当前演化状态的检测器。

MMOEA/DS2 的框架在算法 1 中描述。在初始化阶段,生成一组均匀分布的权重向量 Λ = {λ12 ,…,λN } 和网格 G = {g1 , g2 ,…, gNg } ,其中 λi 和 gs 分别决定第 i 个子问题 fi 和第 s 个子区域。然后,为每个子问题 fi 确定邻域B(i) ,以限制交配和更新。初始种群 P0 随机生成以初始化理想点 z*、网格 G 和外部存档 EA 。
接下来,在主循环中, MMOEA/DS2 限制在邻域 B(i) 内的交配,并根据当前f i 的优化状态自适应地选择两个父代。具体来说,如果识别并添加到 EAi 的任何新的多样性种子,意味着搜索空间未被充分探索,就从具有良好多样性的父代中选择两个。否则,如果历史上最好的收敛程度更新了,我们认为子种群尚未收敛到PF,因此分别从具有良好收敛性和良好多样性的父代中选择一个。否则, fi 的有前景位置应该已被充分探索,两个父代将从 GB(i) 而非 EAB(i) 中选出,以避免陷入局部最优。在通过繁殖操作产生后代 o 后,根据到每个权重向量的最短垂直距离,将其分配给子问题 fj 。之后,MMOEADS2 检查是否更新外部存档 EAj 、阶段标志 stg(j) 和网格 Gj 。主循环将重复进行,直到耗尽最大函数评估次数。最后,我们执行子集选择操作以截断 EA 并获得大小为 N 的最终解决方案集 S 。

3.2 自适应多阶段交配选择

交配选择的理念仍然使用与 MOEA/D [4] 中相同的邻域交配限制方案,以实现均匀探索,即在每个子问题的邻域内交配,以更高的概率在未探索的子区域产生后代。采用锦标赛选择方法从交配池中选择两个父代。交配池的构建及选择标准会根据子问题当前的优化状态自适应变化。
在 MMOEA/DS2 中,采用了两个流行的标准分别衡量每个解的收敛程度和多样性程度。首先,使用输入问题的每个决策变量的上下界进行归一化。然后,决策空间中解 x 的多样性程度可以如下表示:

其中 ∥ ⋅ ∥ \| \cdot \| 表示两个解之间的欧几里得距离; x i 1 x_i^1 xi1 x i 2 x_i^2 xi2 分别是 x i x_i xi 的最近和次近的邻居; α \alpha α 是一个微小的值(例如, 1 0 − 6 10^{-6} 106),用来进一步区分具有相同最小距离的两个解。对于一个解 x x x ,其收敛程度由加权切比雪夫函数的除法形式定义,这与 MOEA/D-DU [34] 的理念相同,

其中, λ i \lambda_i λi 是当前子问题 f i f_i fi 的权重向量; z ∗ = ( z 1 ∗ , … , z M ∗ ) T z^* = (z_1^*, \ldots, z_M^*)^T z=(z1,,zM)T 表示近似理想点。解 x x x 在子问题 f i f_i fi 上的 C o n i ( x ) Con_i(x) Coni(x) 的较小值表示更好的收敛性。

如算法 2 所示,如果阶段等于 1 ,搜索空间仍需探索,因此优先选择具有良好多样性的解。那些被分配到 EAB(i) 并且多样性程度被调整的解,构成了第一个交配池 pool1 和选择标准 crt1(第 2-3 行)。然后,从 pool1 中随机选择两个解 x1 和 x2

  1. 随机选择两个解决方案(x1和x2)
  2. 选择标准确定(Criterion Determination)
    • 步骤2至8:这个部分基于输入的**选择标准(crt)**来确定比较的依据。
      • 如果选择标准是多样性(Div),则计算每个解的多样性程度(步骤3),并以 负多样性值 作为比较标准(步骤4),即选择 多样性较低 的解。
      • 如果选择标准是收敛性(Con),则计算每个解的收敛程度(步骤6),并以 收敛性值 作为比较标准(步骤7),即选择 收敛性更好 的解。

选择多样性较低的解主要是为了探索解空间中的特定区域,而选择收敛性更好的解则是为了尽快找到最优解。

  1. 比较和选择(Comparison and Selection)
  • 步骤9至13:这个部分涉及比较两个解决方案( x1 和 x2 )基于之前确定的标准(多样性或收敛性)。根据比较结果,选择更优的解作为亲本解(parent solution)。

选择第一个标准值更好的解,如算法 3 中所做的那样,作为第一个父代 p1 。对于 p2 ,如图 3 所示,选择两个多样性程度较高的父代(例如, p1 和 x3 )会增加在远离可能的 PSs 的子区域内产生后代的机会。因此,我们进一步限制 p2 的选择范围,在 p1 的 K 个最近邻居内选择(第 5 行),以产生高质量的后代。

如果阶段等于 2 ,交配选择将考虑解的收敛性,因此收敛程度被用来确定第一个父代 p1 (第10行)。然后,根据多样性程度从 EAB(i) 中选择第二个父代 p2 (第12-13行)。第二个交配池 pool2 由 EAB(i) 填充,而不是 p1 的邻居,以避免对早期获得的 PSs 进行偏向性搜索。

对于阶段 3 , EAB(i) 中的解应该已经充分探索了子问题 fi 的搜索空间。并且所有历史搜索信息已由网格 GB(i) 收集。因此,阶段 3 的父代选择是在 GB(i) 的单元格内进行的,这被构建为一个多臂老虎机选择问题。具体来说,我们利用上置信界限(UCB)函数来驱动选择过程[35]:

其中 N s N_s Ns 是每个子问题的选择总次数, n ( g ) n(g) n(g) 表示网格 g 被选择的次数;而 w ( g ) w(g) w(g) 显示了相应的奖励,

如公式 (5) 所示, w ( g ) w(g) w(g) 不依赖于适应度,而是奖励那些产生能够存活下来的后代的单元格。因此,对于子问题产生有希望的后代的单元格将有更高的机会被选为第一个交配池 pool1 。同时,每个解的收敛程度被作为第一个标准进行调整,以避免产生收敛性差的 PF 后代。之后,选择 p1 的K个最近邻居作为 pool2 ,以更好地开发邻域区域并微调种群。从 pool2 中随机选择的两个解中,多样性程度更好的解被调整为 p2

3.3 基于双重分解的分配

在配对选择中确定了两个亲本之后, MMOEA/DS2 利用遗传算法操作符(即 SBX 交叉和多项式变异[36])来生成后代解 o 。然后,我们基于双重分解将 o 分配给子问题,旨在促进目标空间和决策空间的多样性。主要步骤如下:

1) 基于权重向量和网格的双重分解

在初始化阶段,首先使用 Das 和 Dennis 的[37]系统方法生成一组均匀分布的权重向量 Λ = { λ 1 , λ 2 , . . . , λ N } \Lambda = \{\lambda_1, \lambda_2, ..., \lambda_N\} Λ={λ1,λ2,...,λN} ,就像在大多数MOEA/D类型算法[4]中所做的那样。然后,将 Nd 维决策空间的每个维度离散化为 nk 个连续段,其中 n k = ⌈ N ⋅ M 2 ⌉ nk = \lceil \sqrt{\frac{N \cdot M}{2}} \rceil nk=2NM , N 和 M 分别表示种群大小和目标数量。在第 d 维中,每个段的宽度 l d l_d ld 是通过以下方式计算的,

其中 x d u x_{d_u} xdu x d l x_{d_l} xdl 分别是决策空间中第 d 维的上界和下界。因此,整个决策空间,记为 Ω = ∏ d = 1 N d [ x d l , x d u ] \Omega = \prod_{d=1}^{N_d} [x_{d_l}, x_{d_u}] Ω=d=1Nd[xdl,xdu] ,被划分为 n k N d nk^{N_d} nkNd 个正交网格单元。为了避免网格大小的指数增长和减轻计算负担,当 N d > 3 N_d > 3 Nd>3 时,我们随机选择三个维度进行划分。

2) 分配给子问题

然后,后代解 o 根据与 λ j \lambda_j λj 之间的最小垂直距离,被分配给第 j 个子问题。

其中 C o n k ( x ) Con_k(x) Conk(x) 是解 x 在子问题 f k f_k fk 上的收敛程度。如图 4 (a) 所示,后代被分配给 f 3 f_3 f3 ,更新仅发生在分配给 f 3 f_3 f3 的解内。在 MMOEA/DS2 中,解之间的竞争被限制在子问题内部,这在保持目标空间多样性方面起着重要作用。

3) 分配给网格单元

随后,后代进一步被分配到网格中,用于收集每个子问题的搜索空间信息。解 x 在网格 G 中所处的单元格索引号是根据其坐标位置确定的:

其中 n k n_k nk 是每个维度中的分段数; C ( x i ) C(x_i) C(xi) 表示解 x 在第 i 维的坐标,可通过以下方式计算:

其中 x i l x^l_i xil l i l_i li 是决策空间中第 i 维的下界和网格宽度。图 4 (b) 展示了一个示例,进一步将后代 o 分配给子问题 f 3 f_3 f3 的网格。这个例子中的搜索空间是 Ω = [ 0 , 10 ] × [ 0 , 10 ] \Omega = [0, 10] \times [0, 10] Ω=[0,10]×[0,10] ,并且每个维度被划分为十个部分,即 n k = 10 n_k = 10 nk=10 。然后,两个维度中每个段的宽度都是 1 。假设后代 o 的决策变量是 [6.4, 1.7] ,那么 o 的坐标可以通过 C ( x 1 ) = ⌊ ( 6.4 − 0 ) / 1 ⌋ + 1 = 7 C(x_1) = \lfloor (6.4 - 0)/1 \rfloor + 1 = 7 C(x1)=⌊(6.40)/1+1=7 C ( x 2 ) = ⌊ ( 1.7 − 0 ) / 1 ⌋ + 1 = 2 C(x_2) = \lfloor (1.7 - 0)/1 \rfloor + 1 = 2 C(x2)=⌊(1.70)/1+1=2 来获得。接着,后代 o 将被分配到的网格单元的索引号由 i d x ( o ) = 7 + ( 2 − 1 ) ⋅ 10 = 17 idx(o) = 7 + (2 - 1) \cdot 10 = 17 idx(o)=7+(21)10=17 给出。

4) 更新网格单元

接下来,后代 o 将与被分配到的网格单元中的当前解合并。如果满足以下条件之一,网格单元将会被更新:

  • 如果解的数量小于网格密度,所有解都将被保留;
  • 如果解的数量超过网格密度,那么适应性最差的解将被删除。

第一个条件表明后代 o 到达了一个尚待探索的区域,而第二个条件意味着后代找到了一个性能更高的位置。换句话说,每个网格单元只保留到目前为止在该区域找到的新颖且性能高的解。网格密度被调整以限制每个网格中存储的解的规模。如图 4 (b) 所示,索引为17的网格单元的解是 x1 、 x2 和 o 。如果网格密度设置为 4 ,则后代 o 将直接被保留。如果网格密度设置为 2 ,则会删除收敛度最差的解(即 x1 )。在这篇论文中,网格密度被设置为 Nd+1 。

3.4 更新外部存档

在 MMOEA/DS2 中,使用一个外部存档来维护有前景的解,并评估每个子问题的当前优化状态。外部存档 EA 由历史最佳解 h b hb hb 、基于收敛度的外部存档 E A c EA_c EAc 和以多样性为导向的外部存档 E A d EA_d EAd 组成。

这段伪代码描述了一个算法的过程,主要用于更新外部存档(External Archive, EA)和优化状态标志(stg(j))。算法由以下几个部分组成:

  1. 输入和输出
    • 输入包括外部存档(EA)、子问题(f_j)、当前优化状态标志(stg(j))、后代(o)、当前代数(gen)和最大接受阈值(ε_max)。
    • 输出为更新后的外部存档(EA)和当前优化状态标志(stg(j))。
  2. 基于松弛收敛度更新EA
    • 第2行:更新历史最佳收敛度(hb_j)为后代o的收敛度。
    • 第3行:根据收敛度和ε_max更新EA的收敛部分(EA_c_j)。
  3. 使用多样性种子更新EA
    • 第5行:根据当前代数和总代数更新松弛阈值(ε)。
    • 第6行:根据多样性种子更新EA的多样性部分(EA_d_j)。
    • 第7-9行:如果EA_d_j的大小超过了某个阈值Ns,进行多样性种子检测并相应更新EA_d_j。
  4. 更新优化状态标志stg(j)
    • 第11-17行:根据EA_d_j是否用新的多样性种子更新、hb_j是否更新,以及其他条件来设置优化状态标志stg(j)的值。
      这个伪代码主要在多目标优化算法中使用,用于管理解的收敛和多样性,同时更新优化过程的状态。这有助于平衡算法的探索和利用能力,从而在多目标问题中找到一组优良且多样的解。

如算法 4 所述,更新每个子问题的 EA 包括三个关键程序:基于放松收敛度的更新、以多样性增强为导向的更新和当前优化状态检测。
首先, MMOEA/DS2 检测生成的后代 o 是否通过方程式 (3) 更新了子问题 f j f_j fj 上的历史最佳收敛度 h b j hb_j hbj 。然后,基于收敛度的 E A c j EA_c^j EAcj 与 o 结合并通过放松收敛度进行更新,更新后的 E A c j EA_c^j EAcj 满足 C o n ( E A c j ) ≤ C o n ( h b j ) ⋅ ( 1 + ε m a x ) Con(EA_c^j) ≤ Con(hb_j)⋅(1+ ε_max) Con(EAcj)Con(hbj)(1+εmax)
接下来,MMOEA/DS2 检测那些有潜力增强决策空间种群多样性的种子解。种子多样性的检测基于这样一个假设:靠近等效 P S PS PS 的解具有相对较好的收敛度。并且,候选 E A d j EA_d^j EAdj 的收敛度接受阈值通过以下方式更新:

其中 gen 和 Gen 分别是 当前迭代次数 和 最大迭代次数 。类似于选择 E A c j EA_c^j EAcj E A d j EA_d^j EAdj 与 o​ 结合并通过更放松的收敛度更新,候选 E A d j EA_d^j EAdj 满足 C o n ( E A d j ) ≤ C o n ( h b j ) ⋅ ( 1 + ε c ) Con(EA_d^j) ≤ Con(hb_j)⋅(1+ ε_c) Con(EAdj)Con(hbj)(1+εc) 。为了避免影响解的整体收敛性,候选 E A d j EA_d^j EAdj 被截断为 2 ∗ N d 2*Nd 2Nd 个解,这些解是决策空间距离 h b j hb_j hbj 对应解最远的解。
接着,基于 E A j EA_j EAj 的更新状态评估当前子问题 f j f_j fj 的优化状态。具体来说,优化状态被分为以下三种情况:

  • E A d j EA_d^j EAdj 使用新的多样性种子进行更新,这表明存在潜在的等效 PS(Pareto解集)需要探索。因此,stg(j)被设为1,而具有更优多样性的解被选为亲本之一,以此提升种群的多样性。
  • 在子问题 f j f_j fj 上, h b j hb_j hbj 更新为具有更好收敛度的解,这意味着种群尚未收敛至 PF(Pareto前沿)。因此, stg(j) 被设为 2 ,在配对选择过程中,将优先考虑具有更好收敛度的解。
  • 否则,搜索仅需进一步深入,以更好地逼近等效 PS(Pareto解集)。于是, stg(j) 的值被设定为 3 。

图 5 展示了在不同搜索阶段,两个档案解在决策空间中的分布情况。首先,这两个档案都是通过随机生成的初始种群进行初始化,它们在决策空间中分布广泛。在早期阶段,由于收敛度更好, E A c EA_c EAc 的解在 P S 1 PS_1 PS1 附近更密集。同时,后代 o 被接受为多样性种子,采用更宽松的收敛度,以探索潜在的 PS 。因此,从 o 和 x 2 x_2 x2 生成接近 P S 2 PS_2 PS2 的后代是有希望的。此外,允许具有较差收敛度的解(例如, x 1 x_1 x1 )反过来可能降低搜索效率。这就是我们限制 E A d EA_d EAd 大小并随着搜索进展减小 ε c ε_c εc 的原因。
在中期阶段, E A c EA_c EAc 通过更新每个子问题上的历史最佳收敛度,收集了更接近 PS 的解。另一方面, E A d EA_d EAd 中的多样性种子避免了搜索陷入收敛度最佳的 PS 。在最后阶段, E A c EA_c EAc 收集的解已经识别并定位了具有良好收敛度和分布的不同PS。

3.5. 基于外部档案的最终子集选择

当满足停止准则时,算法停止并输出最终解集。尽管 EA_c 中的最终解在目标和决策空间都保持了良好的收敛度和多样性,但其大小远大于种群规模 N 。此外,提供整个解集会增加决策者的选择负担。因此,执行最终子集选择程序,以选出代表性解,并输出一个大小为 N 的解集,这些解集对 PF 和 PS 具有良好的逼近度。

算法 5 展示了最终子集选择策略的细节。首先,将为每个子问题收集的所有档案解合并,并剔除重复的解。然后,使用分布均匀的权重向量依次选择候选解集 S C S_C SC

图 6 展示了最终子集选择的一个示例,其中选中的解、候选解和档案解分别以红色、蓝色和白色显示。对于当前的权重向量 λ j λ_j λj ,最佳收敛度 C o n b Con_b Conb 通过方程 (3) 获得。根据 MMOPs 的定义, E A C EA_C EAC 拥有多个满足 C o n j ( S C ) ≤ C o n b ( 1 + ε m a x ) Con_j(S_C) ≤ Con_b(1+ ε_max) Conj(SC)Conb(1+εmax) 的解。如图 6 所示,候选解 x a x_a xa x b x_b xb 都对 λ j λ_j λj 有着有希望的收敛度。被选中的解将是对已选解集(即 S )多样性度最大的解。因此,解 x b x_b xb 被选择加入到 S 中。总而言之,均匀分布的权重向量和基于收敛度的候选集构建保证了目标空间的收敛度和多样性,而基于多样性度的最终解选择强调了决策空间的多样性。

4. 实验研究

4.1. 实验设置

4.1.1. 实验实例

在本研究中,我们使用了 22 个现有测试函数来测试所提出的 MMOEA/DS2 的性能,包括 MMF [38,39] 、 IDMP [24] 、 Omni-test [12] 和 SYM-PART [40] 。测试问题的特征和参数在表 1 中呈现,其中 Nd 和 M 分别表示决策变量和目标变量的数量。参数 N 和 MaxFE 表示输入种群规模和最大适应度评估次数,这些都受到决策变量数量的影响。

4.1.2. 对比算法

为了进行比较研究,选取了六种最先进的多模态多目标进化算法( MMOEAs ),包括:

  1. CMMO [25],一种用于多模态多目标优化的共生进化框架;
  2. MP-MMEA [41],一种通过多个子种群探索决策空间的进化算法;
  3. HHC-MMEA [42],一种基于混合层次聚类的MMEA;
  4. MMODE_ICD [26],一种利用改进的拥挤距离的差分进化算法;
  5. LORD [43],一种基于图拉普拉斯的优化算法,使用参考向量辅助分解;
  6. MMEA-WI [13],一种基于加权指标的MMEA。

对比算法的详细参数设置参考了相应的原始文献,这些文献在表2中列出。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值