论文研读_基于网格的多目标优化进化算法(GrEA)精简版

本文介绍了基于网格的进化算法(GrEA),通过引入网格优势和网格差异来评估个体,优化多目标问题。算法结合了网格排序、网格拥挤距离和网格坐标点距离,以实现均衡收敛性和多样性的搜索。主要贡献包括网格优势比较、密度估计器和适应性惩罚策略。
摘要由CSDN通过智能技术生成

论文研读_基于网格的多目标优化进化算法(GrEA)精简版

  • 此篇文章为 S. Yang , M. Li , X. Liu , J. Zheng , A grid-based evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput. 17 (5) (2013) 721–736 . 的论文学习笔记,只供学习使用,不作商业用途,侵权删除。并且本人学术功底有限如果有思路不正确的地方欢迎批评指正!

创新点

​ 引入了两个概念—网格优势和网格差异—来确定网格环境中个体之间的相互关系。三种基于网格的准则,即==网格排序、网格拥挤距离和网格坐标点距离==,被纳入到个体的适应度中,以便在配对和环境选择过程中区分它们。此外,我们还开发了一种适应性惩罚个体的适应度调整策略,基于邻域和网格优势关系,以避免部分过度拥挤以及引导搜索朝向归档中的不同方向。

​ 本文提出了一个==基于网格的进化算法(GrEA)==来解决多目标优化问题。本文的目标是利用基于网格的方法的潜力,以在保持解集之间广泛且均匀分布的同时,增强向最优方向的选择压力。

网格具有同时反映收敛性和多样性信息的内在属性。网格中的每个解都有一个确定的位置。通过比较其网格位置与其他解的网格位置,可以估计一个解的收敛性表现,通过计算其网格位置与其他解的网格位置相同或相似的解的数量,可以估计一个解的多样性表现

主要贡献

GrEA相较于其前身的主要贡献可以总结如下。:

  • 引入了网格优势的概念,用于在配对和环境选择过程中比较个体。

  • 设计了一种精细的种群中个体密度估计器,它不仅考虑了其邻居的数量,而且考虑了它自身与这些邻居之间的距离差异。

  • 开发了一种改进的适应度调整技术,用于避免部分过度拥挤,同时引导存档集合中的搜索向不同的方向进行。

算法

网格排序(GR)

​ GR是一个收敛估计器,根据个体在网格位置上的排名来对其进行排序。对于每个个体,GR定义为其在每个目标上的网格坐标的总和:

​ 其中,G k (x)表示个体x在第k个目标上的网格坐标,M是目标的数量。

​ 网格排名(GR)可以被视为单一目标两个解之间的值差异一种解优于另一种解的目标数量之间的自然权衡。一方面,如果一个个体在大多数目标上的表现优于其竞争者,它就有更大的可能性获得较低的GR值。另一方面,单一目标中的差异也是影响GR值的重要部分。例如,考虑图3中的个体C和A,C会获得比A更差的GR值(6对4),因为在f2中的优势小于在f1中的劣势。

​ 请注意,GR的行为与多目标问题的帕累托前沿形状密切相关。例如,当形状为凸形时,位于帕累托前沿中心附近的个体具有良好的评估当形状为凹形时,位于帕累托前沿边缘的个体更为优选。这可能会驱动种群向帕累托前沿的某个区域,如帕累托前沿的拐点移动。在我们的研究中,将引入一种GR调整策略,以在环境选择过程中处理这个问题。

网格拥挤距离(GCD)

​ GrEA考虑了解决方案的邻居的分布对其密度估计的影响。具体来说,x的密度估计器,即GCD,定义如下:

​ 这里,==N(x)表示个体x的邻居集合。==例如,在图3中,个体G的邻居是EF,而G的GCD为3,

​ 即(2-1)+(2-0)=3。

图3:适应度分配的示例。括号中的数字与每个解决方案的GR和GCD对应。

​ 显然,一个解的GCD既取决于邻域范围(即,其他解被视为其邻居的区域)也取决于它与其他解之间的网格差异。一方面,更大的邻域范围通常包含更多的解,因此有助于提高GCD值。请注意,邻域范围由M决定。随着目标数量的增加被考虑的超立方体的数量将逐渐增加,这将与网格环境中超立方体的总数保持一致,从而明确区分个体间的拥挤程度。另一方面,由于涉及到网格差异度量,GCD也显示了解在邻域中的位置信息。邻居位置越远,对GCD的贡献就越小。例如,考虑图3中的个体C和F,尽管它们的邻居数量完全相等,但C的GCD小于F的(2对3)。

GD函数

定义(网格差):

​ 网格差受分割数div的影响,分割数div的范围为0到M(div-1)。分割数div越大,单元格大小越小,个体之间的网格差值越高。

图2:第 k 个目标中的网格设置。

​ 图2展示了第k个目标中的网格设置。首先,我们在种群P中找到了第k个目标的最小值和最大值,并分别将它们标记为mink§和maxk§。然后,根据以下公式确定了第k个目标中网格的下界和上界:

​ 其中div表示目标空间在每个维度上的划分数量(例如,在图2中,div = 5)。相应地,原始M维目标空间将被划分为divM个超盒子。因此,第 k 个目标中的超盒宽度 dk 可以形成如下:

​ 在这种情况下,个体在第k个目标中的网格位置可以由lbk和dk确定:

其中⌊·⌋表示向下取整函数,Gk(x)是第k个目标中个体x的网格坐标,而Fk(x)是第k个目标中x的实际目标值。

  • **lbk:**表示在第 k 个目标函数上,当前种群中的最小目标值(下界)。
  • **dk:**表示在第 k 个目标函数上的超立方体(或网格单元)的宽度,由上界(ub_k)和下界(lb_k)之间的差值除以网格划分数(div)得出。
  • **Gk(x):**表示个体 x 在第 k 个目标函数上的网格坐标。 通过将个体 x 在第 k 个目标函数上的实际值减去下界,再除以超立方体宽度,最后向下取整得到。

例如,在图2中,从左至右,第k个目标中个体的网格坐标依次为0、1、2、3、4和4。接下来,基于它们的网格坐标,定义了用于比较个体之间的两个概念。

​ 其中 x ≺gridy 表示 x 在网格中支配 y,M 是目标的数量,网格环境由种群 P 构建。

网格坐标点距离(GCPD)

​ 尽管GR和GCD已经在收敛性和多样性方面为个体提供了良好的度量,但它们可能仍然无法区分个体。由于他们的计算基于个体的网格坐标,因此GR和GCD都有一个整数值,这意味着一些个体可能具有相同的GR和GCD值,例如,图3中的个体BD。在此,受到ǫ-MOEA[15]策略的启发,我们计算个体与其超立方体中的乌托邦点(即,其超立方体的最佳角点)之间的归一化欧几里得距离,称为GCPD,如下所示:

​ 其中,Gk(x) 和 Fk(x) 分别表示第k个目标中个体x的网格坐标实际目标值,lbk 和 dk 分别代表第k个目标的网格的下界超立方体的宽度M是目标的数量。显然,较低的GCPD是优先的。图3中的个体F和G也说明了这一准则。

图1:一个在双目标空间中以网格形式呈现个体的插图。

​ 网格具有通过自身网格位置(即网格坐标)反映进化过程中解的分布的天然能力。解的网格坐标之间的差异表示解之间的距离,进一步形象地描述了种群中解的密度信息。例如,图 1 说明了双目标空间中网格中的个体。对于图中个体A、B、C,其网格坐标分别为(0, 4)、(1, 1)、(3, 1)。显然,A 和 C 之间的网格坐标差(即 (3 − 0) + (4 − 1) = 6)大于 A 和 B 之间的网格坐标差(即 (1 − 0) + (4 − 1) = 4),说明C距离A比B距离更远。另外,假设存在另一个个体(D)与C具有相同的网格坐标(即网格坐标差为0),可以认为C相对于A、B来说具有更大的拥挤程度。

​ 另一方面,网格还能够指示解决方案在收敛方面的演化状态。

​ 网格坐标不仅考虑一种解决方案是否优于另一种解决方案,还考虑它们之间目标值的差异。例如,考虑图 1 中个体 A 和 B 的网格坐标为 (0, 4) 和 (1, 1),很明显,他们之间的目标 f2 的差异大于目标 f1 的差异(即, (4 − 1) > (1 − 0))。这意味着网格可以进一步区分处于帕累托支配意义上的平局的解,从而在进化多目标优化过程中提供更高的选择压力。

缺点:它不仅受到种群规模和目标数量的影响,还受到划分数量的影响

主程序的计算成本由防止拥挤的惩罚操作控制(第 10-19 行)。由于对个体的惩罚的实施不仅与自身相关,还涉及其网格支配的个体,因此该操作的时间复杂度为O(LN)。这里,L表示对于一组帕累托非支配个体,该集合中被该集合中的一个成员所支配的个体的平均数量,其中网格环境也是由该集合形成的。显然,O(1) ≤ O(L) ≤ O(N)。前者发生在集合中的所有个体彼此不受网格支配时,而后者发生在所有个体都满足网格支配意义上的全序关系时。事实上,具体确定L可能是一项艰巨的任务,它不仅受到种群规模和目标数量的影响,还受到划分数量的影响(划分数量越大,网格非支配个体越多,网格非支配个体越多)。当div → ∞, L → 0)。我们将其留待将来研究。无论如何,从上面的分析来看,环境选择过程的平均时间复杂度受 O(MN2 ) 或 O(LN2 ) 的较大者限制。

​ 假设网格划分数设置为6,存档大小为5。个体的网格坐标根据方程式(3)至(6)计算,适应度由算法5初始化。图8展示了个体的环境选择过程,以及个体的网格坐标和适应度值(GR, GCD和GCPD)也包含在图中。
首先,由于个体A拥有最佳的GCPD值(如图8(b)所示),考虑到其他两个准则无法区分个体A-F,因此个体A被选入存档。相应地,个体C和H受到惩罚,因为前者与A具有相同的网格坐标,而后者被A网格支配。它们的惩罚程度分别为M + 2和M(即,GR© = GR© + (M + 2) 和 GR(H) = GR(H) + M)。

​ 此外,它们的GCD也通过算法6更新。
​ 其次,个体B被挑选出来(如图8©所示)。作为B的唯一邻居,E受到惩罚,相应地,由于被E网格支配,I也被施加惩罚。它们的惩罚值相同(GR(E) = GR(E) + (M - GD(E, B)) 和 GR(I) = GR(I) + (M - GD(E, B)))。此外,对E的GCD进行了更新。

图 7. 一组用于归档的 4 个目标个体。括号中的数字与其目标值相对应

图 8. 环境选择过程的图示。个体按照适应度值的顺序排列进行观察。被陷害的个人意味着他们已经进入档案库。存档大小设置为 5。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值