2021-11-17 文献1

Preliminary prediction of individual response to electroconvulsive therapy using whole-brain functional magnetic resonance imaging data
利用全脑功能磁共振成像数据初步预测电休克治疗的个体反应
year 2020, neuro clinic
electroconvulsive - relating to the treatment of mental illness by the application of electric shocks to the brain. 与精神疾病治疗有关,通过对大脑实施电刺激 - 电休克疗法ECT

摘要:
电休克疗法发展迅速,已经广泛的应用于治疗抑郁症(DEP)。然而,识别ECT反应的预测性生物标志物仍是个人化耐受治疗和理解治疗机制的首要。这项研究在122例治疗抑郁症患者中使用了一个基于连通性的预测模型(CPM)方法,来探查ECT前全脑功能连接能否预测抑郁级别改变和ECT后的缓解期状态(122个受试者中的47人,样本占比38.5%),以及ECT前和种子点的脑网络标志物在ECT前后(pre- and post-)的纵向改变是否与疗程相关的抑郁等级改变有关系。结果显示ECT反应中预测性能最好的网络是负FC网络(反相关),它预测ECT后抑郁严重程度(连续测量),在缓解期预测有76.23%的准确率。具有最佳预测性能的FC网络集中在前额叶和颞叶和皮质下核,包括下额叶(inferior frontal, IFG)、上额叶(superior frontal, SFG)、颞上回(superior temporal, STG)、颞下回(inferior temporal gyri, ITG)、基地神经节(basal ganglia, BG)和丘脑(thalamus, Tha)。这些脑区域中的部分地方也同时被作为FC网络中的节点,并在ECT前后显示出显著改变,但是这些节点网络与疗程反应没有关系。这项研究设计在纵向设计上具有不足,缺少对照组也限制了治疗后状态机制的因果推论。虽然预测性生物标志物仍处于潜在翻译(potential translation)的推荐阈值之下,这些分析方法和结果均揭示出生物标志物对于发展(advance)个人治疗方案的前景(promise)和普遍性。

方法:
(1)受试者和临床结果
从两个中心招募122例符合纳入排除标准的患者,the demographical, clinical and medical characteristics of the samples:
在这里插入图片描述
(2)ECT流程——(不懂,忽略掉)
(3)数据获取与处理
在UNM(新墨西哥大学)中心,TR=2s, TE=29ms, FA=75°, voxel size=3.75x3.75x4.55mm, volumes=154.
在UCLA(加州大学洛杉矶分校)中心,TR=5s, TE=30ms, FA=70°, 3.4x3.4x5mm, volumes=180。
预处理:使用SPM12预处理,包括:1)realignment , 2) slice timing; 3) normalization to an EPI template; 4) spatial smoothing; 5) filter; 6) nuisance regression; 7) regression of the site-covariate. 此外,为了进一步评估头动伪象(motion artifacts),使用mean framewise displacement。
(4)静息态功能连接计算
注册到MNI标准空间的受试者MRI volumes分成 Brainnetome 地图的246个种子点,包括210个皮层和36个皮层下节点来计算FC。提取每个受试者246节点的平均时间序列。节点间的计算使用相关性分析,随后进行fisher Z转换,生成246×246的FC矩阵。移除246个对角元素以后,提取FC网络的上三角元素作为预测的特征值,也就是(namely, used to introduce more exact and detailed information about sth that you have just mentionded.),每个受试者的特征值向量是246×245/2=30135个。
(5)个体化预测方法
基于连接的预测模型(connectome-based predictive modeling, CPM)是集成了多种机器学习方法的数据驱动模型。近期有研究用该方法进行预测,用多折交叉验证从连接数据中揭示了脑-行为关系的预测单元。为了预测个体化ECT反应与DEP,我们选择了ECT治疗前(baseline)静息态功能图像特征来预测抑郁等级分数的全部改变和抑郁等级的比例改变(proportional change):比例=(治疗前分数-治疗后分数)/治疗前分数。虽然使用比例结果比绝对值变化和ECT治疗后抑郁结果更加的保守,但是比例结果可以控制ECT治疗前的不稳定性。HDRS比例与ECT治疗前的HDRS相关(r=0.2, p=0.02),图1 展示了这项科学研究(investigation)中使用的个体化预测框架。我们在进行预测之前,归回了site,并且使用留一法的交叉验证来检测多个模型。
在这里插入图片描述
在留一法中,测试集留下单个被试,N-1个被试用作训练集,重复N次直到所有被试训练完。第一,训练阶段分为3个主要部分:提取特征值,选择特征值子集,训练多种线性回归模型。特征值提取细节见2.4部分;第二,选择特征子集找出代表性特征子集来建立回归模型。我们计算了比例值%HDRS与FC向量中的特征i(i=1,2,…,30,135),得到两者的r值和p值;紧接着,满足r>0 p<正向阈值(positive threshold, PT)的K+特征重新排列,得到正向特征(PF)。满足r<0 p<负向阈值(negative threshold, NT)的K-特征重新排列后,得到负向特征(NF)。最优的正向和负向阈值通过网格搜索方法获得。最后,PF和NF分别合计,获得最后的正向特征值总和(positive features sum, PFS)和负向特征值总和(negative features sum, NFS)。这样就减少了特征子集中特征值间的冗余程度(degree if redundancy)。特征值的首选子集与预测方式高度相关,并且与其他的特征具有低的互相关性。第三,%HDRS与PFS的结合,PFS和NFS的%HDRS等用于多种线性模型的训练。在验证阶段,从验证集中提取K+PF和K-NF并分别计算PFS和NFS。最后,巴拉巴拉巴拉(不想翻译了,这段太绕口了,感觉写的好复杂),总之就是介绍PF, NF, PFS, NFS等指标。
进一步的,在特征子集选择中,我们使用控制协变量法来重新训练预测模型,具体而言(specifically),我们排除任何与年龄、性别、用药历史显著相关的FC(两样本t检验,p<0.01),这种保守的方法过滤到了与%HDRS相适应的FC,潜在地降低了预测能力但是也减少了用药历史的影响。我们同时评估了remitters 和 not-remitters间预测性FC的纵向研究差异。
(6)区分预测性FC网络
从训练集中提取PF和NF到训练MLP模型。所有这些功能连接网络有潜力预测%HDRS。每个FC的相关性权重由排序后的FC频次决定。为了更好的解释和可视化,Brainnetome altas 的246个FC节点被分为24个相关的大尺度脑解剖节点。在每一对的宏观范围节点,其贡献权重分别(respectively)由PF和NF的FC的相关性权重总和来评估。因为不同的公关节点拥有不同的节点数量(从4个节点到16个节点不等),因此每对宏观尺度节点的贡献权重除以(divided by)节点数量,以得到最终的平均贡献程度来避免(circumvent)不成比例(disproportionate)的节点的影响。两组的预测性FC网络分别通过上述操作获得PF和NF。进一步的,为了清楚的获得宏观节点最相关的ECT反应预测,我们过滤了122次留一法中反复提取的PF和NF作为一致性FC(consensus FC)。我们分别对两组进行了一致性FCs来获得更精准的预测性FC网络。
(7)纵向分析和组间对比
使用纵向分析和组间对比对比预测结果与疗程反应(纵向改变与ECT反应有关)。第一,我们用配对t检验来区分与ECT治疗前后纵向改变有关的FC;随后我们通过可视化审视了(examined)与纵向改变和预测性脑节点(正向特征与负向特征)相关的脑节点中的重叠程度。第二,我们通过使用线性回归模型(%HRDRS ~ ∆FC + age + sex + medication use + treatment number + site)区分疗程反应网络。第三,我们通过remitters and non-remitters间的平均正向和负向FC来评估纵向FC组差异(两样本t检验和配对样本t检验)。

图展示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
解读:
这篇文章对我来说,稍微难了点,超出了我的理解范围,尤其是里面复杂的关于正FC和负FC的建立,r<0和r>0这个容易懂,但是到了阈值那部分开始就不太懂了。不过这不重要,重要的是通过这篇文献,主要的收获在于:
(1)它的数据预处理包括7个部分,1)realignment , 2) slice timing; 3) normalization to an EPI template; 4) spatial smoothing; 5) filter; 6) nuisance regression; 7) regression of the site-covariate. DPABISF对数据的预处理包括了ARglobalCWF这6个部分,A=slice timing, R=realign, C=covariates removed, W=normalize, F=filter。DPABSF的C就是nuisance covariates regression。然后根据brainnetcome 地图提取ROI的时间序列。
因此我的收获是,如果我要复现这篇文章,我用DPABSF自动处理后,把ARglobalCWF文件夹下面的filter volumes拿出来,单独进行smooth derivatives,平滑核 FWHM,DPABSF默认用的[4 4 4],这篇文章用的是[6 6 6],这个site-regression应该可以理解为global regression。这样就复现出来了。
(2)这篇文章是surf-based analysis,但是作者在预处理部分没有讲的很清楚,其实不是volumes,而是surface,我在预处理部分硬是没看出来是surf-based,说明还是讲述的不太清楚。这篇文章使用了Brainnetome atlas地图,地图一共包含210个皮层regions,36个皮层下regions和28个小脑regions,这个研究用的是皮层及皮层下的246个regions。
(3)PF, NF, PFS, NFS讲述的有点复杂,不是很好理解,也没有说明为啥要提出这个东西,总的来说看到这部分就把我给劝退了,所以没办法继续了。但是值得一提的是,这项研究的图还是很ok的,不同的大尺度brain area用不同的颜色标注,包括文字,这给人一种很舒服的感觉,这种方法可以学习。
(4)其实把,对于大尺度功能脑网络和很多个子网络,可以用和弦图来表示。但是对于自定义的数个ROI的FC分析,其实和弦图有点不太好用,这个
时候最好使用桑基图。如下:
在这里插入图片描述
在这里插入图片描述

参考:https://blog.csdn.net/sgzqc/article/details/121329875?spm=1001.2014.3001.5501
“使用matplotlib让你的数据更加生动(三)”

补充:
realignment 重对齐:来自任何一个体素的信号强度随时间的变化都可能由头部运动引起,这是一个严重的混淆,尤其是在 fMRI 研究中。 尽管头部运动受到限制,合作对象仍然表现出高达几毫米的位移。 重新对齐涉及 (i) 估计仿射“刚体”变换的 6 个参数;(ii) 通过使用三线性、sinc 或样条插值对数据重新采样来应用变换。
longitudinal study 纵向研究,历时研究。该研究类型与横断面研究相反。
横断面研究 corss-sectional 是在一个时间点对所有研究对象进行描述。
纵向研究 longitudinal study是在一串时间点对研究对象的疾病发展进行描述。
Longitudinal studies (naturalistic and pre/post treatment) are needed to investigate state vs. trait markers of FND pathophysiology, as well as to identify prognostic biomarkers and neural mechanisms of treatment response.

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

clancy_wu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值