关于fmri里的建模,GLM的first level analysis 和second level analysis

GLM(一般线性模型)常用于时间序列分析,包括第一级分析和第二级分析。第一级分析关注单个受试者数据,评估每个预测变量对观察值的贡献;第二级分析结合多个受试者的结果,探究共同性和稳定性。固定效应模型假设同一状态下的激活模式相同,但不考虑被试间差异,因此在实际应用中不太常见。随机和混合效应模型则考虑了被试间差异,更适用于总体水平的推论。最后,通过评估激活的空间分布而非单个体素,可以揭示信息表征模式,对认知神经科学具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Introduce the first level analysis and second level analysis in GLM (genereal linear model )
GLM is used in time series mostly.
ANNOTION: GLM IS USED FOR TASK DESIGN ONLY.
description from wiki:
Following pre-processing, data analysis is often carried in two steps: a separate first-level analysis of data from each individual subject, followed by a second-level analysis in which results from multiple subjects are combined.

Simply speaking, the first-level analysis could be known as the analysis in single-subject, most of this type trials are task fmri design. So that the second level analysis is the analysis in multiple subjects, or can be told the group analysis of single subjects.

For GLM
GLM, general nilearn model.
For single subjec, to investigate the association between volumes and predictor variables, we set up a GLM model to fit that. The format are as follow:
在这里插入图片描述

  1. y1 - represents y label you named in first time point;
  2. X1.1 - the former 1 represents time point, and the latter 1 represents volume 1;
  3. β1 - the weight contribution of X1.1 volume for y label prediction; ( beta )
  4. ε1 - the constant item, which represents distance between predict y and truly y, it also be known as error. ( epsilon )

The aim of the first-level statistical analysis is to determine how large the contribution of each predictor variable xi is to the observed values of y.

GLM model could be simplified as follow:
Y = Xβ + ε
annotation:

  1. Y is an nx1 colmn vevtor and the length equal to time series.
  2. X is an nxp matrix, and it always include confunding factors, such as nuisance, head motion.
  3. β is an px1 vector of unknown weights setting.
  4. ε is an nx1 vector containning the error values in each observation.
    visualize:
    在这里插入图片描述
    the goal in fittting X~Y is to minimize the sum of squared residuals:
    在这里插入图片描述
    second level analysis
    Once single-subject data has been analyzed for a set of participants, individual results are aggregated to assess commonality and stability of effects within or across groups of interest.
    second level analysis can be understood easily as the multiples subjects analysis.
    REMENBER: Prior to group analysis (second analysis), individual results should be warpped into a common reference space ( Talairach or MNI152 ).

FIXED EFFECTS 固定效应
classical statistical hypothesis testing proceeds by comparing the difference between the observed and hypothesized effect against the “yardstick” of variance (Holmes and Friston, 1998).
In a fixed effects (FFX) analysis, the variance considered is that derived from scan-to-scan measurement error, and represents the within-subject variability (sw 2 ). 在固定效应中,变量考虑来源于扫描方式的误差,即被试内差异。
这个固定效应模型感觉一般不常用。其原因是仅在所分析的样本水平上作推论,但是没有考虑到抽样误差,即被试间差异,固定效应假设每个受试者在同一状态下激活模式是相同的。这对于推广健康受试者的核磁标准是难以实行的,所以不常用。
RANDOM EFFECTS, MIXED EFFECTS, AND SUMMARY STATISTICS
随机效应,混合效应,和汇总统计

random and mixed effects 随机和混合效应
要在总体水平上应用推论,就要考虑到被试间有差异这个观点。在随机效应模型中(random effects),统计测试评估这种效应的大小相对于受试者之间的变异性是否显著。这种误差项包括被试的基本差异,不同被试对刺激产生的不同血流动力学及神经反应,头颅解剖上的差异。当然,除非单个被试的β已经知道,否则不能得出精确的随机效应推断,只能是评估。
混合效应模型就是包括session内的固定效应和session间的随机效应,综合起来就是混合效应,mixed effects.
Summary statistics 汇总统计:
A hierarchical two-level linear model of (fMRI) data analysis can be written as follows 数据分析的分层两级线性模型
在这里插入图片描述
在这里插入图片描述
the error term h is not equal to the random effect component eG, but contains a mixture of both the within and between variability (hence the characterization as a MFX).
Finally, a different approach is to derive b-estimates from a GLM but then assess significance of spatial distribution of activations, rather than individual voxels . This strategy, by switching from a massive-univariate to a (local) multivariate approach has the promising advantage of assessing patterns of information representation, rather than localization of information, something that may be of great interest from a cognitive neuroscience point of view.
最后,另一种方法是从GLM中得出b估计值,然后评估激活的空间分布的重要性,而不是单个体素。这种策略,通过从大规模单变量方法切换到(局部)多变量方法,具有评估信息表征模式的潜在优势,而不是信息的本地化。

### MATLAB 中使用 GLM 进行 fMRI 数据分析 #### 创建设计矩阵 为了执行广义线性模型(GLM)回归分析,首先需要创建一个合适的设计矩阵来表示实验条件。假设有一个简单的fMRI实验,其中包含两种刺激类型:“脸”“房屋”。对于每个试次的时间点,设计矩阵中的每一列表示一种特定类型的事件。 ```matlab % 假设 tr 是重复时间, onsets_face durations_face 分别是脸部图片呈现的起始时间持续时间, % 同样地定义 houses 的变量. D = [onsets_face; durations_face; ones(length(onsets_face), 1)]; design_matrix_faces = spm_hrf(D', TR); % 使用 SPM 提供的标准血氧水平依赖(HRF)函数生成预测响应曲线. D = [onsets_house; durations_house; ones(length(onsets_house), 1)]; design_matrix_houses = spm_hrf(D', TR); ``` #### 构建并拟合GLM模型 一旦有了设计矩阵,就可以将其与实际测量到的大脑活动数据相结合,建立GLM方程,并通过最小二乘法求解β系数向量(即权重),从而得到最佳拟合直线[^2]。 ```matlab % 加载预处理后的4D图像文件 (nifti格式). data = spm_read_vols(spm_vol('fmri_data.nii')); % 将三维体积转换成二维矩阵形式,使得每个像素对应一列。 voxel_time_series = reshape(data, [], size(data, 4))'; % 对应位置处加入截距项作为常数偏移。 X = [ones(size(design_matrix_faces, 1), 1), design_matrix_faces, design_matrix_houses]; % 应用普通最小二乘估计获得参数估计值 beta。 beta = X \ voxel_time_series; ``` #### 结果可视化 最后一步是对所得的结果进行统计检验,并将显著激活区域映射回原始的空间坐标系中显示出来。通常情况下,会计算t统计量或F统计量来进行推断测试。 ```matlab % 计算 t 统计量用于单样本 t 测试。 contrast_vector = [0 1 -1]; % 表明对比 "face vs house" t_stats = contrast_vector * inv(X' * X) * X' * voxel_time_series; % 显著性阈值设定为 p<0.05 (未经多重比较校正) p_threshold = 0.05; significant_clusters = find(abs(t_stats)>spm_Tinv(p_threshold, length(beta)-size(X,2))); % 可视化结果... figure(); imagesc(reshape(significant_clusters, size(data(:,:,1)))); colorbar; title('Significant Voxels'); ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

clancy_wu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值