pytorch tensor.detach

import torch as t
x = t.ones(1, requires_grad=True)
x.requires_grad   #True
y = t.ones(1, requires_grad=True)
y.requires_grad   #True

x = x.detach()   #分离之后
x.requires_grad   #False

y = x+y      	  #tensor([2.])
y.requires_grad   #我还是True
y.retain_grad()   #y不是叶子张量,要加上这一行

z = t.pow(y, 2)
z.backward()    #反向传播

y.grad        #tensor([4.])
x.grad        #None

API

Returns a new Tensor, detached from the current graph.
返回的Tensor和原来的Tensor共享相同的存储空间,但是返回的Tensor没有梯度

参考:
https://blog.csdn.net/qq_39463274/article/details/105157719
https://pytorch.org/docs/stable/autograd.html?highlight=detach#torch.Tensor.detach

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值