一种MATLAB中解复杂方程(高次、指数、无解析解)的方法,可以在实现论文中公式时使用,solve函数。

      前几天我在实现一篇论文时,对于一个公式其他参数都已知的情况下,要得到剩下得那个未知的变量,由于方程的形式很复杂,用常规方法很难处理,故在实现时使用了MATLAB中solve函数,现在把方法呈现在这里,在复现论文公式时是一种比较简洁的思路。

       首先,我找了一个简单的例子:

σ02-Eγ22l224σ022=σ01-Eγ12l224σ012-αE(t2-t1)

        此公式中,除σ02外其余的参数皆可知,要求输入其余变量,输出为σ02。

        可见,只看σ02情况下,该方程为一三次方程,已经很难用笔算出。那么不妨将其余变量视为已知量,在MATLAB中使用root函数,找到<

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

clear_lantern

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值