解决 mmdetection 报错 KeyError:‘iscrowd‘、KeyError:‘segmentation‘

文章讲述了在使用mmdetection处理自定义数据集时遇到的错误,常见原因是coco.json文件中segmentation字段未给出有效值。解决方法是确保在数据集转换时提供这些字段的相应值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自定义数据集时报错提示如下:
请添加图片描述
解决:多半是在生成coco.json文件时没有给出字段相应的值,mmdetection在运行时会对这两个值进行检查。在数据集转换时显示给定为空即可。

# annotation 列表中给定
"segmentation": [
    []
   ],
"iscrowd": 0
<think>好的,我现在需要解决用户提到的两个问题:OpenMP运行时冲突(OMP Error #15)和安装mmdetection时的依赖问题。首先,我得回顾之前给出的解决方案,并结合用户提供的引用内容来调整回答。 用户这次特别提到了引用[1]到[4],需要参考这些内容。不过看起来引用中的信息有些可能不相关,比如引用[4]提到了图片显示问题,这可能和当前问题无关,但用户特别指出要参考,所以可能需要简要提及。不过核心还是处理OMP错误和安装依赖。 首先处理OMP Error #15。之前的回答中提到了三种方法:删除冲突文件、统一版本、临时设置环境变量。用户提供的引用[3]提到了暴力删除法,这和之前的方法1类似,但需要强调正确操作,避免误删系统文件。同时,引用[1]和[2]也提到了同样的错误,可能需要整合这些信息。 然后是关于mmdetection的安装问题。用户提到依赖缺失,这通常是因为版本不兼容或缺少某些库。需要指导用户如何正确安装,特别是结合PyTorch版本和CUDA版本,同时使用conda管理依赖以避免冲突。 需要检查用户是否混合使用了conda和pip,这容易导致库冲突。建议使用conda优先安装核心库,如PyTorch,再用pip安装mmdetection,并在必要时指定版本。 另外,用户之前的回答中提到的预防措施,如优先使用conda、避免混用安装渠道,这些需要再次强调,尤其是在安装mmdetection时。 可能还需要考虑用户的环境,比如是否在Windows系统下,因为OMP错误在Windows中较为常见。引用[3]提到的搜索删除dll文件的方法在Windows中更适用,可能需要详细说明步骤。 最后,用户可能遇到mmdetection安装时的具体错误,如编译问题或依赖库缺失,需要提供具体的安装命令和验证步骤,例如安装pycocotools等。 总结步骤: 1. 解决OMP错误:推荐删除冲突的dll文件,参考引用[3]的方法但更详细,比如具体路径和验证步骤。 2. 安装mmdetection:创建干净的conda环境,安装正确版本的PyTorch和相关依赖,再通过pip安装mmdetection,并处理可能的依赖缺失。 3. 结合用户引用内容,确保覆盖提到的解决方案,同时补充预防措施和验证方法。</think>### 全面解决 OpenMP 运行时冲突与 mmdetection 安装依赖问题 --- #### 一、OpenMP Error #15 深度解决方案 该错误本质是多个 `libiomp5md.dll` 文件被重复加载,常见于混合安装 PyTorch、MKL、OpenCV 等库时[^1][^3]。以下为整合引用[3]的优化方案: ##### **1. 精准清除冲突文件(推荐)** **操作流程**: 1. **定位所有冲突文件** - Windows 用户使用 **Everything** 工具全局搜索 `libiomp5md.dll` - 重点关注路径: ``` Anaconda3\envs\<环境名>\Library\bin\ Anaconda3\envs\<环境名>\Lib\site-packages\torch\lib\ C:\Windows\System32\ # 谨慎操作系统目录 ``` 2. **选择性保留唯一版本** - 保留 PyTorch 自带的版本(位于 `torch/lib/`) - 删除其他位置的副本(如 `Library/bin/` 或第三方库目录) ```bash # 示例:重命名 Anaconda 环境中的冲突文件 ren C:\Anaconda3\envs\mmdet\Library\bin\libiomp5md.dll libiomp5md.dll.bak ``` 3. **验证修复效果** ```bash python -c "import torch; print(torch.__config__.parallel_info())" # 正确输出应包含 "OpenMP" 且无报错 ``` ##### **2. 环境变量临时规避(仅调试)** 在代码入口添加: ```python import os os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # 允许重复加载[^1][^3] ``` **风险提示**:可能导致计算性能下降 10%-20%,高精度计算任务结果不可靠[^2]。 --- #### 二、mmdetection 安装与依赖完整指南 mmdetection 对 PyTorch 版本和 CUDA 版本敏感,需严格匹配依赖。 ##### **1. 创建纯净虚拟环境** ```bash conda create -n mmdet python=3.8 -y conda activate mmdet ``` ##### **2. 安装 PyTorch 与 CUDA** 根据显卡驱动选择版本(以 CUDA 11.3 为例): ```bash conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch ``` **验证 PyTorch CUDA 支持**: ```python import torch print(torch.cuda.is_available()) # 应输出 True ``` ##### **3. 安装 mmdetection 核心依赖** ```bash # 使用 conda 安装基础科学计算库 conda install numpy scipy matplotlib pandas -y # 编译依赖(Windows 需额外安装 VS Build Tools) conda install cython pycocotools -c conda-forge ``` ##### **4. 安装 mmdetection** ```bash # 推荐从源码安装(确保版本兼容) git clone https://github.com/open-mmlab/mmdetection.git cd mmdetection pip install -v -e . # "-v" 显示详细安装日志 ``` **关键检查点**: - 安装日志中不应出现 `libiomp5md.dll` 覆盖提示 - 若报错 `"Failed building wheel for xxx"`,需单独安装缺失包(如 `apt-get install g++` on Linux) ##### **5. 验证安装** ```python from mmdet.apis import init_detector print("MMDetection 环境验证通过!") ``` --- #### 三、预防措施与深度优化 1. **依赖隔离原则** - 使用 `conda list --export > requirements.txt` 导出精确环境配置 - 禁止混用 `conda install` 和 `pip install` 安装核心库(如 numpy、scipy) 2. **版本锁定技巧** 在 `requirements.txt` 中指定精确版本: ``` mmcv-full==1.7.1 # 必须与 mmdetection 版本匹配 opencv-python==4.5.5.64 ``` --- #### 四、常见问题排查 **Q1:安装后出现 `ImportError: cannot import name 'container_abcs'`** 👉 原因:PyTorch 版本过高,降级到 1.12 以下或修改源码适配。 **Q2:训练时提示 `CUDA out of memory`** 👉 降低 `samples_per_gpu` 参数,或在 `configs/_base_/datasets/coco_detection.py` 中调整批次大小。 --- #### 相关问题 1. 如何查看 PyTorch 当前使用的 OpenMP 版本? 2. mmdetection 训练时出现 "KeyError: 'CLASSES'" 如何解决? 3. 如何为 mmdetection 自定义数据集? --- 通过上述步骤可系统性解决 OpenMP 冲突和依赖问题,若仍遇异常,建议上传完整错误日志进行定向分析。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值