bzoj 4006: [JLOI2015]管道连接(斯坦纳树)

4006: [JLOI2015]管道连接

Time Limit: 30 Sec  Memory Limit: 128 MB
Submit: 581  Solved: 316
[Submit][Status][Discuss]

Description

小铭铭最近进入了某情报部门,该部门正在被如何建立安全的通道连接困扰。

该部门有 n 个情报站,用 1 到 n 的整数编号。给出 m 对情报站 ui;vi 和费用 wi,表示情
报站 ui 和 vi 之间可以花费 wi 单位资源建立通道。
如果一个情报站经过若干个建立好的通道可以到达另外一个情报站,那么这两个情报站就
建立了通道连接。形式化地,若 ui 和 vi 建立了通道,那么它们建立了通道连接;若 ui 和 vi 均
与 ti 建立了通道连接,那么 ui 和 vi 也建立了通道连接。
现在在所有的情报站中,有 p 个重要情报站,其中每个情报站有一个特定的频道。小铭铭
面临的问题是,需要花费最少的资源,使得任意相同频道的情报站之间都建立通道连接。

Input

第一行包含三个整数 n;m;p,表示情报站的数量,可以建立的通道数量和重要情报站的数

量。接下来 m 行,每行包含三个整数 ui;vi;wi,表示可以建立的通道。最后有 p 行,每行包含
两个整数 ci;di,表示重要情报站的频道和情报站的编号。

Output

输出一行一个整数,表示任意相同频道的情报站之间都建立通道连接所花费的最少资源总量。

Sample Input

5 8 4
1 2 3
1 3 2
1 5 1
2 4 2
2 5 1
3 4 3
3 5 1
4 5 1
1 1
1 2
2 3
2 4

Sample Output

4

HINT

选择 (1; 5); (3; 5); (2; 5); (4; 5) 这 4 对情报站连接。


对于 100% 的数据,0 <ci <= p <= 10; 0 <ui;vi;di <= n <= 1000; 0 <= m <= 3000; 0 <= wi <=

20000。

Source

[Submit][Status][Discuss]

题解:斯坦纳树。

这道题是求使频道相同的点连通的最小费用,所有生成的不一定是森林。那么需要用斯坦纳树先预处理,然后再用状压DP进行转移,最后得到结果。转移的时候需要注意,只有一个频道的点同时满足的时候,当前状态才是可行的。

注意数组不要越界,因为这个问题调了好久。。。。。。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define N 10003
#define inf 1000000000
using namespace std;
int tot,n,m,k,t,belong[N];
int next[N],point[N],v[N],len[N],sum;
int f[1003][(1<<11)],mi[20],dp[(1<<11)],cnt[N];
int col[N][13],num[N],can[N];
queue<int> p; 
void add(int x,int y,int z)
{
    tot++; next[tot]=point[x]; point[x]=tot; v[tot]=y; len[tot]=z;
    tot++; next[tot]=point[y]; point[y]=tot; v[tot]=x; len[tot]=z;
}
void spfa(int sta)
{
    while (!p.empty())
    {
        int now=p.front(); p.pop();
        for (int i=point[now];i;i=next[i])
         if (f[v[i]][sta]>f[now][sta]+len[i])
         {
            f[v[i]][sta]=f[now][sta]+len[i];
            if (!can[v[i]])
            {
                can[v[i]]=1;
                p.push(v[i]);
            }
         }
        can[now]=0;
    }
}
bool check(int sta)
{
    memset(cnt,0,sizeof(cnt));
    for (int i=0;i<=t;i++)
     if (sta&(1<<i))  cnt[belong[i]]++;
    for (int i=0;i<=sum;i++)
     if (cnt[i]!=col[i][0]&&cnt[i]!=0)  return false;
    return true;
}
int main()
{
    scanf("%d%d%d",&n,&m,&k);
    for (int i=1;i<=m;i++)
     {
        int x,y,z; scanf("%d%d%d",&x,&y,&z);
        add(x,y,z);
     }
    mi[0]=1;
    for (int i=1;i<=11;i++) mi[i]=mi[i-1]*2;
    t=-1;
    memset(num,-1,sizeof(num));
    for (int i=1;i<=k;i++)
    {
        int x,y; scanf("%d%d",&x,&y);
        col[x][++col[x][0]]=y; sum=max(sum,x);
        num[y]=++t; belong[t]=x;
    }
    for (int i=1;i<=n;i++)
     for (int j=0;j<mi[t+1];j++) f[i][j]=inf;
    for (int i=1;i<=n;i++)
     if (num[i]!=-1)  f[i][mi[num[i]]]=0;
    for (int sta=1;sta<mi[t+1];sta++)
    {
        for (int i=1;i<=n;i++)
        {
            for (int s=sta&(sta-1);s;s=sta&(s-1))
             f[i][sta]=min(f[i][sta],f[i][sta-s]+f[i][s]);
            if (f[i][sta]!=inf)  p.push(i),can[i]=1;
        }
        spfa(sta);
    }
    for (int sta=1;sta<mi[t+1];sta++)
    {
        dp[sta]=inf;
        for (int i=1;i<=n;i++)
         dp[sta]=min(dp[sta],f[i][sta]);
    }
    for (int sta=0;sta<mi[t+1];sta++)
    if (check(sta))
     for (int s=sta&(sta-1);s;s=sta&(s-1))
      if (check(s)) dp[sta]=min(dp[sta],dp[sta-s]+dp[s]);
    printf("%d\n",dp[mi[t+1]-1]);
}


发布了1278 篇原创文章 · 获赞 106 · 访问量 63万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览