dp[s][i]:记录s结点,要得到一棵i个节点的子树去掉的最少边数
考虑其儿子k
1)如果不去掉k子树,则
dp[s][i] = min(dp[s][j]+dp[k][i-j]) 0 <= j <= i
2)如果去掉k子树,则
dp[s][i] = dp[s][i]+1
总的为
dp[s][i] = min (min(dp[s][j]+dp[k][i-j]) , dp[s][i]+1 )
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
int n,p,root;
int dp[155][155],son[155],fa[155],bro[155];
void dfs(int root)
{
int tem,k;
dp[root][1]=0;
k=son[root];
while(k)
{
dfs(k);
for(int i=p;i>=1;i--)
{
tem=dp[root][i]+1;
for(int j=1;j<i;j++)
{
tem=min(tem,dp[k][j]+dp[root][i-j]);
}
dp[root][i]=tem;
}
k=bro[k];
}
}
int solve()
{
for(int i=1;i<=n;i++)
{
if(fa[i]==0){root=i;break;}
}
dfs(root);
int ans=dp[root][p];
for(int i=1;i<=n;i++)
{
ans=min(ans,dp[i][p]+1);
}
return ans;
}
int main()
{
int a,b;
scanf("%d%d",&n,&p);
memset(son,0,sizeof(son));
memset(fa,0,sizeof(fa));
memset(bro,0,sizeof(bro));
memset(dp,10000,sizeof(dp));
for(int i=1;i<n;i++)
{
scanf("%d%d",&a,&b);
bro[b]=son[a];
fa[b]=1;
son[a]=b;
}
printf("%d",solve());
return 0;
}