51nod 1256 乘法逆元

费马小定理,我好像一开始只看了皮毛,只看了简单的乘法逆元,因为一般的都是x^p=x(mod p)p是素数。如果p不是素数应该怎么办?欧拉定理可以解决这个问题,假设m=p1^e1*p2^e2...pn^en.x^h(m)=1(mod p).数学符号打不出来,想看详细的去百度吧。

#include <bits\stdc++.h>
using namespace std;
long long n,m;
long long euler_phi(long long n)
{
    long long res=n;
    for(long long i=2;i*i<=n;i++)
    {
        if(n%i==0)
        {
            res=res/i*(i-1);
            for(;n%i==0;n/=i);
        }
    }
    if(n!=1)res=res/n*(n-1);
    return res;
}
long long pow_mod(long long a,long long b)
{
    long long ans=1;
    while(b>0)
    {
        if(b&1)ans*=a;
        ans%=m;
        // cout<<a<<" "<<ans<<endl;
        a=(a*a)%m;
        b/=2;

    }
    return ans;
}
int main(){
cin>>n>>m;
cout<<pow_mod(n,euler_phi(m)-1)<<endl;
  return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值