Quick-sort quiz

/*
============================================================================
Name : quick_sort.c
Author : Cly
Version :
Copyright : Your copyright notice
Description : Hello World in C, Ansi-style
============================================================================
*/

#include <stdio.h>
#include <stdlib.h>
#define MAX 101
int a[MAX]; //定义全局数组,小型方便测试

void quicksort(int left,int right) //每次进入的左、右边界
{
int i,j,t,tmp;
if(left>right)
return;
tmp=a[left];
i=left;
j=right;
while(i!=j)
{
while(a[j]>=tmp&&j>i)
--j;
while(a[i]<=tmp&&i<j)
++i;
if(i<j)
{
t=a[i];
a[i]=a[j];
a[j]=t;
}
}
a[left]=a[i];
a[i]=tmp;

quicksort(left,i-1); //递归处理左边的
quicksort(i+1,right); //递归处理右边的
return;
}

int main(void) {
puts("!!!quick_sort!!"); /* prints !!!quick_sort!! */
freopen("./in.txt","r",stdin);
int i,n;
scanf("%d",&n); //从 stdin 输入数据
for(i=1;i<=n;++i)
scanf("%d",&a[i]);

quicksort(1,n); //快速排序调用

for(i=1;i<=n;++i) //排序输出后的结果
printf("%d ",a[i]);

fclose(stdin);
return EXIT_SUCCESS;

}
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值