鸢尾花Iris数据集的SVM线性分类练习

一、支持向量机的概念

支持向量机(Support Vector Machine, SVM) 是一类按监督学习(supervised learning)方式对数据进行二元分类的广义线性分类器(generalized linearclassifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)。
SVM:使用铰链损失函数(hinge loss)计算经验风险(empirical risk)并在求解系统中加入了正则化项以优化结构风险(structural risk),是一个具有稀疏性和稳健性的分类器。
SVM可以通过核方法(kernel method)进行非线性分类,是常见的核学习(kernel learning)方法之一

二、LinearSVC(C)方式实现分类

使用Jupyter Notebook编辑器

在这里插入图片描述
在Anaconda3的文件夹里找到Jupyter的,打开它。
它会出现一个控制台,也就是写入数据的后台,需要保持后台开启。然后打开一个网页用于编辑
在网页点击NEW选择python3
开始编辑

制作原始数据

在编辑框粘贴如下代码

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC

iris = datasets.load_iris()
X = iris.data
y = iris.target

X = X [y<2,:2] # 只取y<2的类别,也就是0 1 并且只取前两个特征
y = y[y<2] # 只取y<2的类别

# 分别画出类别 0 和 1 的点
plt.scatter(X[y==0,0],X[y==0,1],color='red')
plt.scatter(X[y==1,0],X[y==1,1],color='blue')
plt.show()

点击运行
结果如下
在这里插入图片描述
这时未经标准化的原始数据点分布,接下来我们需要编写代码将之分类以及各种处理

训练模型

添加如下代码

# 标准化
standardScaler = StandardScaler()
standardScaler.fit(X)

# 计算训练数据的均值和方差
X_standard = standardScaler.transform(X) # 再用 scaler 中的均值和方差来转换 X ,使 X 标准化
svc = LinearSVC(C=1e9) # 线性 SVM 分类器
svc.fit(X_standard,y) # 训练svm

运行结果如下
在这里插入图片描述
其中C 值是控制正则项的重要程度,C 越小,容错空间越大

绘制决策边界

导入一个 ListedColormap 包

from matplotlib.colors import ListedColormap # 导入 ListedColormap 包

添加如下代码

def plot_decision_boundary(model, axis): 
	x0, x1 = np.meshgrid( np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1,1),
                         np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1,1)
                        )    
	X_new = np.c_[x0.ravel(), x1.ravel()] 
	y_predict = model.predict(X_new) 
	zz = y_predict.reshape(x0.shape) 
	custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9']) 
	plt.contourf(x0, x1, zz, cmap=custom_cmap) #绘制决策边界     
    
plot_decision_boundary(svc,axis=[-3,3,-3,3]) # x,y轴都在-3到3之间 

# 绘制原始数据
plt.scatter(X_standard[y==0,0],X_standard[y==0,1],color='red') 
plt.scatter(X_standard[y==1,0],X_standard[y==1,1],color='blue') 
plt.show()

运行结果如下
在这里插入图片描述
决策边界绘制出来了,再改变c值看看会发生什么变化

设置超参数 C 值

添加如下代码

svc2 = LinearSVC(C=0.01)
svc2.fit(X_standard,y)
plot_decision_boundary(svc2,axis=[-3,3,-3,3]) # x,y轴都在-3到3之间
# 绘制原始数据
plt.scatter(X_standard[y==0,0],X_standard[y==0,1],color='red')
plt.scatter(X_standard[y==1,0],X_standard[y==1,1],color='blue')
plt.show()

运行结果如下,可以看到左下红点分类是错误的。
在这里插入图片描述

分类后的内容基础上添加上下边界

修改定义的函数如下

def plot_svc_decision_boundary(model, axis):
    x0, x1 = np.meshgrid(
        np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),# 600个,影响列数
        np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1),# 600个,影响行数
    )
    # x0 和 x1 被拉成一列,然后拼接成360000行2列的矩阵,表示所有点
    X_new = np.c_[x0.ravel(), x1.ravel()]    # 变成 600 * 600行, 2列的矩阵

    y_predict = model.predict(X_new)   # 二维点集才可以用来预测
    zz = y_predict.reshape(x0.shape)   # (600, 600)

    from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
    
    plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
   
    w = model.coef_[0]
    b = model.intercept_[0]
    
    index_x = np.linspace(axis[0], axis[1], 100)
#     f(x,y) = w[0]x1 + w[1]x2 + b
#     1 = w[0]x1 + w[1]x2 + b    上边界
#     -1 = w[0]x1 + w[1]x2 + b   下边界
    y_up = (1-w[0]*index_x - b) / w[1]
    y_down = (-1-w[0]*index_x - b) / w[1]
    
    x_index_up = index_x[(y_up<=axis[3])  & (y_up>=axis[2])]
    x_index_down = index_x[(y_down<=axis[3]) & (y_down>=axis[2])]
    
    y_up = y_up[(y_up<=axis[3])  & (y_up>=axis[2])]
    y_down = y_down[(y_down<=axis[3]) & (y_down>=axis[2])]
    
    plt.plot(x_index_up, y_up, color="black")
    plt.plot(x_index_down, y_down, color="black")

plot_svc_decision_boundary(svc, axis=[-3, 3, -3, 3])
plt.scatter(X_standard[0:y2,0], X_standard[0:y2,1],color='red')
plt.scatter(X_standard[y2:y1,0], X_standard[y2:y1,1],color='blue')
plt.show()

运行结果
在这里插入图片描述
修改c值

plot_svc_decision_boundary(svc2, axis=[-3, 3, -3, 3])
plt.scatter(X_standard[0:y2,0], X_standard[0:y2,1],color='red')
plt.scatter(X_standard[y2:y1,0], X_standard[y2:y1,1],color='blue')
plt.show()

运行结果
在这里插入图片描述

三、总结

可以得知常数C越大,容错空间越小,上下边界较近;常数C越小,容错空间越大,上下边界越远。

四、参考

SVM线性分类——鸢尾花Iris数据集
从 python 编程角度了解 SVM 对线性与非线性数据分类原理

  • 1
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值