【量化交易笔记】5.SMA,EMA 和WMA区别

股票中的SMA,EMA和WMA是常用的技术分析指标。这些指标基于历史股价计算得出,可以帮助投资者了解股票的趋势,为决策提供依据。虽然它们都是平均值算法,但它们之间还是有一些区别的。

SMA 简单移动平均线(Simple Moving Average)

SMA是移动平均线的简称,全称是简单移动平均线(Simple Moving Average)。它是历史股价平均值的简单算术平均数。计算SMA,只需要将一段时间内股票收盘价的总和除以这段时间内的交易日数。

例如,计算过去5天的SMA,只需要将这5天的股票收盘价相加,再除以5,即可得出SMA。

SMA是一种较为简单的移动平均方式,经常被用于判断短期的股票趋势。由于SMA只是简单地考虑了过去一段时间的股票价格,因此它会被短期价格波动所影响,因此可能不如其他平均值算法准确。

EMA 指数移动平均线(Exponential Moving Average)

EMA是指数移动平均线(Exponential Moving Average)。与SMA不同,EMA并不是简单的日平均数,而是考虑到股票价格的整体趋势,即将较大的权重放在了最近的股票价格上。

在EMA的计算中,最近的股票价格会得到较高的权重,而较早的股票价格的权重则会下降。计算过程中需要指定EMA的时间周期,通常包括12天和26天等。

对于EMA的计算,需要先计算出一个起始的EMA值。这可以通过计算一段时间内的SMA来得到,然后用下面的计算公式去计算:

当前EMA值 = ((当前收盘价 - 上一个EMA值) * 平滑指数)+ 上一个EMA值
平滑指数可以通过下面的方法来计算:
平滑指数 = 2 /(时间周期 + 1)
EMA的计算方法相对于SMA更为复杂,但它可以更好地反映当前的市场趋势。
y t = x t + ( 1 − α ) x t − 1 + ( 1 − α ) 2 x t − 2 + . . . + ( 1 − α ) t x 0 1 + ( 1 − α ) + ( 1 − α ) 2 + . . . + ( 1 − α ) t y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ... + (1 - \alpha)^t x_0}{1 + (1 - \alpha) + (1 - \alpha)^2 + ... + (1 - \alpha)^t} yt=1+(1α)+(1α)2+...+(1α)txt+(1α)xt1+(1α)2xt2+...+(1α)tx0
其中, t t t 为窗口大小, α \alpha α 为平滑因子( 0 < α ≤ 1 0 \lt \alpha \leq 1 0<α1 可根据公式计算,如 2 / ( 1 + t ) 2/(1+ t ) 2/(1+t),也可自定义), ( 1 − α ) i (1- \alpha) ^ i (1α)i 为呈指数增加的权重,期数离预测时刻越近权重越大。

y 0 = x 0 y t = ( 1 − α ) y t − 1 + α x t , \begin{split}\begin{split} y_0 &= x_0\\ y_t &= (1 - \alpha) y_{t-1} + \alpha x_t, \end{split}\end{split} y0yt=x0=(1α)yt1+αxt,

# 直接用 Pandas 的ewm 函数
pandas.ewm(span=n)

WMA 加权移动平均线(Weighted Moving Average)

WMA是加权移动平均线(Weighted Moving Average),它是一种考虑过去时间内价格变化和波动的Moving Average方式。与EMA类似,WMA也是将较大的权重放在较近的数据上,但与EMA不同的是,它使用的是带权的平均算法。

在WMA中,每个数据都被通过给定的权重,然后再求和得到加权平均值。通常情况下,较近的数据会有较大的权重,而较远的数据权重会下降,WMA有助于平滑股票价格的波动,并根据相应的趋势给出合适的建议。

WMA的计算也需要指定一个时间周期,并且需要先计算出一段时间内的总权值,用下面的公式计算总权值后,再使用上面的加权平均公式计算WMA:

保存总权值 = 从 1 开始的周期数 * 周期内每个数据的权重之和
每个数据的权重 = (当前周期数 + 1)- 当前数据的位置
WMA是比SMA更为准确的一种移动平均计算方法,但它的计算也更为复杂。

W M A t ( n ) = w 1 x t + w 2 x t − 1 + . . . + w n − 1 x t − n + 2 + w n x t − n + 1 w 1 + w 2 + . . . + w n WMA_t(n) = \frac{w_1x_t + w_2x_{t-1} + ... + w_{n-1}x_{t-n+2} +w_nx_{t-n+1} }{w_1+w_2+ ... + w_n } WMAt(n)=w1+w2+...+wnw1xt+w2xt1+...+wn1xtn+2+wnxtn+1

其中, n n n为窗口大小, W M A t WMA_t WMAt为t时刻的移动平均值。

技术分析中,权重系数为n~0,即最近一个数值的权重为n,次近的为n-1,如此类推,直到0。
W M A t ( n ) = n x t + ( n − 1 ) x t − 1 + . . . + 2 x t − n + 2 + x t − n + 1 n + ( n − 1 ) + . . . + 2 + 1 WMA_t(n) = \frac{nx_t + (n-1)x_{t-1} + ... + 2x_{t-n+2} +x_{t-n+1} }{n+(n-1)+ ... + 2+1 } WMAt(n)=n+n1)+...+2+1nxt+(n1)xt1+...+2xtn+2+xtn+1

def WMA(close, n):
    weights = np.array(range(1, n+1))
    sum_weights = np.sum(weights)

    res = close.rolling(window=n).apply(lambda x: np.sum(weights*x) / sum_weights, raw=False)
    return res

#或
def WMA(close, n):
    return close.rolling(window=n).apply(lambda x: x[::-1].cumsum().sum() * 2 / n / (n + 1))

方法对比分析

从权重思维来看,三种方法都可以认为是加权平均。SMA:权重系数一致;WMA:权重系数随时间间隔线性递减;EMA:权重系数随时间间隔指数递减。 如下图:
下面以 t=30 作图

WMA 是 线性递减,EMA是指数递减

结论

三种平均值算法各有优缺点,你需要根据你的股票市场分析需要及实际情况来决定使用哪种算法。如果你的分析需要考虑。EMA,WMA 即 远离当前时间,影响较小,前一天权重大影响最大。因此在股票很多指标上都用EMA 来代替SMA,如MACD等。

Python是一种流行的编程语言,由于其易学易用、免费且开源、具有丰富的第三方库等优势,它被广泛应用于各种领域,特别是在金融分析和量化交易中,Python也成为了不可缺少的工具之一。 在Python金融分析与量化交易实战的课程中,学生可以通过pan.baidu.com平台获取相关资源,掌握包括了数据分析、量化交易策略、数据可视化等方面的实用技能。 首先,课程将从数据的获取和清洗入手,介绍如何使用Pythonpandas包进行数据分析和预处理。特别是在金融领域,数据质量的好坏对于交易策略的制定至关重要,因此学生可以通过课程中的案例学习,掌握常见的数据清洗技巧,比如缺失值处理和异常值检测等。 其次,课程还将介绍如何使用Python进行量化交易策略的设计和实现。量化交易是一种基于量化模型和算法的交易方式,通过历史数据分析建立规则并实现自动化交易,具有较高的执行效率和一定的风险控制能力。学生可以学习和了解Python中一些流行的量化交易库,例如zipline和backtrader等,同时,还可以了解一些经典的交易策略,比如均值回归和趋势跟踪等。 最后,课程会介绍如何使用Python进行数据可视化,这对于金融分析和量化交易来说也非常重要。学生可以使用Python的可视化工具包matplotlib和seaborn等,对数据进行可视化呈现,有助于快速掌握数据的规律和趋势。 总之,Python金融分析与量化交易实战 pan.baidu.com 是一门非常实用的课程,学习者可以通过课程了解并掌握Python金融领域中的应用,同时也可以在实践中提升编程和数据分析的能力。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值