欧几里得和《几何原本》
欧几里得(Euclid),公元前约300年生于古希腊,被认为是几何学的奠基人之一。他的主要成就是编写了一本名为《几何原本》(Elements)的著作,这本书成为了几何学的经典教材,并且在整个古代和中世纪都广泛使用。
《几何原本》是一本包含了几何学基本原理、定理和证明的书籍,被分为13个卷,涵盖了平面几何、立体几何、数论等不同领域。第 1~4 卷主要为平面几何, 但间杂了数的理论——比如第 2 卷给出了乘法对加法的分配律等, 并求解了若干代数方程; 第 5~6 卷为比例理论及相似理论, 但同样间杂了数的理论, 且其中第 5 卷关于数有很深刻的洞见; 第 7~9 卷以对数学分支的现代分类观之, 是对几何与数的相对比例的的逆转——转入了以数为主的数论范畴, 其中包括了对 “素数有无穷多个” (第 9 卷命题 20) 等重要命题的证明; 第 10 卷对 “不可公度量” (incommensurable)——也就是无理数——做了详细讨论; 第 11~13 卷对包括 “柏拉图正多面体” (Plato solid) 在内的诸多立体几何话题的探讨。欧几里得在书中使用了严格的演绎推理和逻辑,建立了一个完整的几何体系,并以此为基础,推导出了许多重要的几何定理,如直角三角形的勾股定理等。
欧几里得的《几何原本》对后世的数学发展影响深远。它不仅在古代和中世纪被广泛教授和学习,而且在现代数学中仍然具有重要地位。这本书的几何思想和证明方法影响了许多后来的数学家,包括笛卡尔和牛顿等。欧几里得的贡献被认为是几何学的里程碑,也为后来的数学研究奠定了基础。
在《几何原本》中,欧几里得从一些基本的几何概念和公理出发,逐步推导出各种几何定理,构建了一个完善的几何体系。这个体系不仅包括了平面几何和立体几何的知识,还涉及了数论和几何代数等领域。通过逻辑推理和演绎方法,欧几里得展示了几何学的严密性和逻辑性,使得《几何原本》成为了几何学的经典教材,被广泛传颂和学习。
《几何原本》,是古希腊数学家欧几里得(Euclid)所著的一部数学著作,完成于公元前300年左右。这部著作是一本系统介绍几何学和数学原理的书籍,对后世的数学、科学乃至哲学产生了深远的影响。
中文书名由来
1577 年意大利人利玛窦获准赴遥远的东方传教,1582年利玛窦来到了澳门,1598年他到了南京。 两年后(1600年),一位从上海进京赶考的读书人在南京拜访了利玛窦。他们交谈十分投机,这位读书人便是徐光启。1604年, 四十三岁的徐光启第三次参加会试终于考取了进士,成为翰林院庶吉士。而此时利玛窦也终于获明神宗同意在北京定居传教。从1606年秋天开始,每天安排固定的三、四个小时功课。先由利玛窦口头翻译并讲解,再由徐光启草录,两人再反复推敲验证,之后再由徐光启撰写成典雅的中文。【利玛窦和徐光启翻译的底本是利玛窦在罗马学院的数学老师克拉乌(Christoph Clavius)审订和注释的拉丁文版《欧几里得的基本原理》(Euclidis Elementorum)。欧几里德的著作Στοιχεα本来只有十三卷,克拉乌在后面又增添了两卷注释,这样总共十五卷。】
《几何原本》希腊文的名称Στοιχεα,意思是“原理”,英文书名the Elements,自拉丁文的Elementa,元素。利玛窦徐光启就把拉丁文Elementa翻译为“原本”,意为本原,原始,将中文书名确定为《几何原本》。 “平行线”、“三角形”、“对角”、“直角”、“锐角”、“钝角”、“相似” 这些我们如今已耳熟能详的术语,也都是利玛窦与徐光启反复推敲确定下来的。
顺便说明,1610年,58岁的利玛窦病逝。《几何原本》后9卷的翻译在利玛窦逝世后便搁置了。这一搁就是250年。直到1857年才由清朝数学家李善兰(1811-1882年)与英国伦敦会传教士伟烈亚力(Alexander Wylie, 1815-1887年)共同翻译完成。
《几何原本》13卷,有人做了较详细的统计:
第1卷由23条定义、5条公设、5条公理以及48个命题组成,全部讲解平面几何知识。其中命题47对勾股定理进行了证明,该命题也是本卷最重要的一条命题。第2卷由2条定义、14个命题组成,主要讲解的代数恒等式。第3卷由11条定义、37个命题组成,第4卷由5条定义、16个命题组成。第3卷、第4卷全部讲解圆的知识。第5卷由18条定义、25个命题组成,主要探讨比例。希思认为,希腊数学中没有什么发现比本卷中的理论更能令人夸耀。霍金《上帝创造整数》一书追溯了数学史上2500年间17位数学家31篇著作,该书对本卷全部25个命题进行了详细的讲解,而第1卷中仅有命题47勾股定理被收录了。可见本卷内容价值很高。第6卷由3条定义、33个命题,主要讲解相似图形。第7卷由22条定义、39个命题组成,主要讲解初等数论。霍金在《上帝创造整数》一书中,对本卷全部39个命题进行了详细的讲解。第8卷由26个命题组成。第7卷、第8卷对奇数、偶数、平方数等进行了定义,主要讲解了素数。第9卷由36个命题组成。本卷对有理数、无理数进行了深入的讲解。第10卷由4个定义、115个命题组成。本卷是全书命题数最多的一卷,主要讲解不可公度量。第11卷由28个定义、39个命题组成。第12卷由18个命题组成。第13卷由18个命题组成。这3卷全部讨论的立体几何学知识,并在一些命题证明中使用了穷竭法。
参考: