给N和K,N代表N*N的矩阵,K代表接下来有K个格子,每个格子上有一个小行星,
他的武器每次可以干掉某一行或者某一列的所有小行星,然后问最少使用 多少次该武器
最小点覆盖:就是对于一个图,选取最少数量的点S,使得对于所有的边,都至少有一端点是S中的点
König定理:二分图中的最小覆盖点数==最大匹配数
这个题建图,每行对应为左边的每个点,每列对应为右边的点,然后如果(i,j)有小行星,就连一条边
然后使用最少的武器就是,选取最少的点,使得所有边都至少有一端是被选取的
所以就是二分图最小点覆盖,就是最大匹配数,然后匈牙利就可以搞过去
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <string>
#include <fstream>
#include <list>
#include <stack>
#include <queue>
#include <deque>
#include <algorithm>
#include <map>
#include <set>
#include <vector>
#define maxn 505
#define maxm 505
using namespace std;
bool graph[maxn][maxm];
bool vis[maxm], flag;
int match[maxn];
int N, K;
bool find(int x)
{
int j;
for (j = 0; j < N; j++)
{
if (graph[x][j] == true && vis[j] == false)
{
vis[j] = true;
if (match[j] == -1 || find(match[j]))
{
match[j] = x;
return true;
}
}
}
return false;
}
int main()
{
//freopen("input.txt", "r", stdin);
int x, y;
int ans = 0;
scanf("%d%d", &N, &K);
memset(graph, 0, sizeof(graph));
memset(match, -1, sizeof(match));
for (int i = 0; i < K; i++)
{
scanf("%d%d", &x, &y);
--x; --y;
graph[x][y] = true;
}
for (int i = 0; i < N; i++)
{
memset(vis, 0, sizeof(vis));
if (find(i)) ans += 1;
}
printf("%d\n", ans);
//while (1);
return 0;
}