[基础算法] 并查集

并查集

1.将两个集合合并

2.查询两个集合是否在同一个集合中

基本原理:每个集合用同一棵树来表示,树根的编号就是树的编号,每个节点储存其父节点,p[x]表示x的父节点。

问题一:如何判断是否为根节点:if(p[x]==x)

问题二:如何求x的集合编号:int find(int x) {  if(p[x]!=x) p[x]=find(p[x]); return p[x];  } (带路径压缩,递归回溯的过程会直接把节点的父节点指向根节点,减少了以后寻找的时间)

问题三:如何合并两个集合:px是x所在树的编号(也就是根节点),py是y所在树的编号,p[px]=py;令y为根节点,px合并到py树里。

例题

例题1:

一共有 n 个数,编号是 1∼n,最开始每个数各自在一个集合中。

现在要进行 mm 个操作,操作共有两种:

  1. M a b,将编号为 a 和 b 的两个数所在的集合合并,如果两个数已经在同一个集合中,则忽略这个操作;
  2. Q a b,询问编号为 a 和 b 的两个数是否在同一个集合中;

输入格式

第一行输入整数 n 和 m。

接下来 m 行,每行包含一个操作指令,指令为 M a b 或 Q a b 中的一种。

输出格式

对于每个询问指令 Q a b,都要输出一个结果,如果 a 和 b 在同一集合内,则输出 Yes,否则输出 No

每个结果占一行。

数据范围

1≤n,m≤1e5  1≤n,m≤1e5

输入样例:

4 5
M 1 2
M 3 4
Q 1 2
Q 1 3
Q 3 4

输出样例:

Yes
No
Yes

AC代码:

#include <iostream>

using namespace std;

const int N=100010;
int p[N];
int n,m;

int find(int x)  //返回x的祖宗结点+路径压缩
{
    if(p[x] != x) p[x] = find(p[x]);
    return p[x];
}
int main()
{
    scanf("%d %d",&n,&m);
    
    for(int i=1;i<=n;i++) p[i]=i;
    
    char op[2];
    int a,b;
    while(m--)
    {
        scanf("%s%d%d",op,&a,&b);
        if(op[0]=='M')
        {
            if(find(a)!=find(b)) p[find(a)]=find(b);
        }
        else
        {
            if(find(a)==find(b)) puts("Yes");
            else puts("No");
        }
    }
    return 0;
}

例题2:

给定一个包含 n 个点(编号为 1∼n)的无向图,初始时图中没有边。

现在要进行 m 个操作,操作共有三种:

  1. C a b,在点 a 和点 b 之间连一条边,a 和 b 可能相等;
  2. Q1 a b,询问点 a 和点 b 是否在同一个连通块中,a 和 b 可能相等;
  3. Q2 a,询问点 a 所在连通块中点的数量;

输入格式

第一行输入整数 n 和 m。

接下来 m 行,每行包含一个操作指令,指令为 C a bQ1 a b 或 Q2 a 中的一种。

输出格式

对于每个询问指令 Q1 a b,如果 aa 和 bb 在同一个连通块中,则输出 Yes,否则输出 No

对于每个询问指令 Q2 a,输出一个整数表示点 aa 所在连通块中点的数量

每个结果占一行。

数据范围

1≤n,m≤1e5

输入样例:

5 5
C 1 2
Q1 1 2
Q2 1
C 2 5
Q2 5

输出样例:

Yes
2
3

AC代码:

#include <iostream>

using namespace std;

const int N = 100010;
int p[N],cnt[N];
int n,m;

int find(int x)
{
    if(p[x]!=x) p[x]=find(p[x]);
    return p[x];
}

int main()
{
    cin>>n>>m;
    
    for(int i=1;i<=n;i++)
    {
        p[i]=i;
        cnt[i]++;
    }
    
    char op[2];
    int x,y;
    while(m--)
    {
        cin>>op;
        
        if(op[0]=='C')
        {
            cin>>x>>y;
            if(find(x) != find(y))
            {
                cnt[find(y)] +=cnt[find(x)];
                p[find(x)]=find(y);
            }
        }
        else if(op[1]=='1')
        {
            cin>>x>>y;
            
            if(find(x)==find(y)) puts("Yes");
            else puts("No");
        }
        else
        {
            cin>>x;
            cout<<cnt[find(x)]<<endl;;
        }   
    }
}

                                                                                                     ——来源ACwing 基础算法 并查集

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值