并查集
1.将两个集合合并
2.查询两个集合是否在同一个集合中
基本原理:每个集合用同一棵树来表示,树根的编号就是树的编号,每个节点储存其父节点,p[x]表示x的父节点。
问题一:如何判断是否为根节点:if(p[x]==x)
问题二:如何求x的集合编号:int find(int x) { if(p[x]!=x) p[x]=find(p[x]); return p[x]; } (带路径压缩,递归回溯的过程会直接把节点的父节点指向根节点,减少了以后寻找的时间)
问题三:如何合并两个集合:px是x所在树的编号(也就是根节点),py是y所在树的编号,p[px]=py;令y为根节点,px合并到py树里。
例题
例题1:
一共有 n 个数,编号是 1∼n,最开始每个数各自在一个集合中。
现在要进行 mm 个操作,操作共有两种:
M a b
,将编号为 a 和 b 的两个数所在的集合合并,如果两个数已经在同一个集合中,则忽略这个操作;Q a b
,询问编号为 a 和 b 的两个数是否在同一个集合中;
输入格式
第一行输入整数 n 和 m。
接下来 m 行,每行包含一个操作指令,指令为 M a b
或 Q a b
中的一种。
输出格式
对于每个询问指令 Q a b
,都要输出一个结果,如果 a 和 b 在同一集合内,则输出 Yes
,否则输出 No
。
每个结果占一行。
数据范围
1≤n,m≤1e5 1≤n,m≤1e5
输入样例:
4 5
M 1 2
M 3 4
Q 1 2
Q 1 3
Q 3 4
输出样例:
Yes
No
Yes
AC代码:
#include <iostream>
using namespace std;
const int N=100010;
int p[N];
int n,m;
int find(int x) //返回x的祖宗结点+路径压缩
{
if(p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main()
{
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++) p[i]=i;
char op[2];
int a,b;
while(m--)
{
scanf("%s%d%d",op,&a,&b);
if(op[0]=='M')
{
if(find(a)!=find(b)) p[find(a)]=find(b);
}
else
{
if(find(a)==find(b)) puts("Yes");
else puts("No");
}
}
return 0;
}
例题2:
给定一个包含 n 个点(编号为 1∼n)的无向图,初始时图中没有边。
现在要进行 m 个操作,操作共有三种:
C a b
,在点 a 和点 b 之间连一条边,a 和 b 可能相等;Q1 a b
,询问点 a 和点 b 是否在同一个连通块中,a 和 b 可能相等;Q2 a
,询问点 a 所在连通块中点的数量;
输入格式
第一行输入整数 n 和 m。
接下来 m 行,每行包含一个操作指令,指令为 C a b
,Q1 a b
或 Q2 a
中的一种。
输出格式
对于每个询问指令 Q1 a b
,如果 aa 和 bb 在同一个连通块中,则输出 Yes
,否则输出 No
。
对于每个询问指令 Q2 a
,输出一个整数表示点 aa 所在连通块中点的数量
每个结果占一行。
数据范围
1≤n,m≤1e5
输入样例:
5 5
C 1 2
Q1 1 2
Q2 1
C 2 5
Q2 5
输出样例:
Yes
2
3
AC代码:
#include <iostream>
using namespace std;
const int N = 100010;
int p[N],cnt[N];
int n,m;
int find(int x)
{
if(p[x]!=x) p[x]=find(p[x]);
return p[x];
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
{
p[i]=i;
cnt[i]++;
}
char op[2];
int x,y;
while(m--)
{
cin>>op;
if(op[0]=='C')
{
cin>>x>>y;
if(find(x) != find(y))
{
cnt[find(y)] +=cnt[find(x)];
p[find(x)]=find(y);
}
}
else if(op[1]=='1')
{
cin>>x>>y;
if(find(x)==find(y)) puts("Yes");
else puts("No");
}
else
{
cin>>x;
cout<<cnt[find(x)]<<endl;;
}
}
}
——来源ACwing 基础算法 并查集