验证曲线与学习曲线的对比分析(Python实现)
在数据科学领域中,模型评估是必不可少的环节之一。其中,学习曲线和验证曲线是两种用于评估模型性能的重要工具。本文将分别介绍学习曲线和验证曲线,并结合Python实现,对比分析两者在评估模型性能上的差异。
一、学习曲线
学习曲线(Learning Curve)是指随着训练样本数量的增加,模型在训练集和测试集上的表现情况。通常来说,当增加训练样本数量时,模型在训练集上的表现会逐渐提高,但在测试集上表现会先提高后下降。这是由于当样本数量较少时,模型容易过度拟合,而随着样本数量的增加,模型逐渐趋于稳定,测试误差也逐渐减小。
现在我们使用Python代码对学习曲线进行实现。假设我们有一个简单的线性回归模型,我们可以通过不断增加训练样本数量来观察其在训练集和测试集上的表现情况。代码如下:
import numpy as np
import matplotlib.pyplot as