机器学习的学习曲线和验证曲线

本文探讨了机器学习项目中的学习曲线和验证曲线,解释了它们的区别和应用。学习曲线关注参数固定时训练集和验证集的得分对比,而验证曲线则展示不同参数值对训练和测试得分的影响。内容包括数据划分方法如ShuffleSplit、交叉验证(cv=10)和手动划分,并通过示例代码展示了它们对学习曲线的影响,强调了数据划分方式对结果的显著影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

         最近在复盘优达学城的机器学习项目, 重新写了一下波斯顿放假预测的项目,除了模型的选择及网格搜索进行选择参数的相关知识外,还着重复习了关于学习曲线和复杂度曲线(验证曲线)

        首先学习曲线和复杂度曲线(验证曲线)的区别,学习曲线是指在参数值确定的情况下,训练集和验证集的得分情况的对比,复杂度曲线(验证集曲线)是展示某个参数在取不同值时候,训练集与测试集得分情况的对比。

        学习曲线的X轴是数据的数量,y轴是得分;复杂度曲线(验证曲线)的x轴是一个参数的值:比如max_depth(1,2,3,4,5,6,7,8,9,10),y轴是训练集和测试集在各个参数取值情况下的得分

 

 上面两张图分别是学习曲线和复杂度曲线

 

下面来说一下学习曲线或者验证曲线的数据集合的划分

1 ShuffleSplit 划分

上面的两个图中就是用ShuffleSplit 方式对数据集合进行划分的,代码如下:

cv = ShuffleSplit(features.shape[0], n_iter =
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值