基于Matlab的LMS算法自适应滤波器
自适应滤波器是一种使用输入信号来调整滤波器系数的数字滤波器。其中,LMS(Least Mean Square)算法是最常用的自适应滤波器算法之一。本文将介绍基于Matlab的LMS算法自适应滤波器的实现方法。
一、LMS算法概述
LMS算法基于均方误差(MSE)最小化原则,通过不断地调整滤波器系数,使得滤波器输出与期望输出之间的均方误差最小。LMS算法每次迭代的系数更新公式如下:
w ( n + 1 ) = w ( n )
基于Matlab的LMS算法自适应滤波器
自适应滤波器是一种使用输入信号来调整滤波器系数的数字滤波器。其中,LMS(Least Mean Square)算法是最常用的自适应滤波器算法之一。本文将介绍基于Matlab的LMS算法自适应滤波器的实现方法。
一、LMS算法概述
LMS算法基于均方误差(MSE)最小化原则,通过不断地调整滤波器系数,使得滤波器输出与期望输出之间的均方误差最小。LMS算法每次迭代的系数更新公式如下:
w ( n + 1 ) = w ( n )