线性代数与解析几何——Part3 线性空间 & 线性变换

1. 线性空间

1. 数组空间 & 线性关系

首先,我们给出数组空间的定义如下:

定义5.1.1
数域 F F F上的一个 n n n维数组向量 a \bold{a} a是一个有序的 n n n元数组
a = ( a 1 , a 2 , . . . , a n ) \bold{a} = (a_1, a_2, ..., a_n) a=(a1,a2,...,an)
其中 a i ∈ F a_i \in F aiF i = 1 , 2 , . . . , n i=1,2,...,n i=1,2,...,n,称为向量 a \bold{a} a的第 i i i个分量。 F F F上的 n n n维数组向量的全体称为 n n n数组空间,记为 F n F^{n} Fn

对于数组空间当中的一组向量,我们可以定义线性组合如下:

定义5.1.2
给定一组向量 a 1 , a 2 , . . . , a m ∈ F n \bold{a}_1, \bold{a}_2, ..., \bold{a}_m \in F^{n} a1,a2,...,amFn及一组数 λ 1 , λ 2 , . . . , λ m ∈ F \lambda_1, \lambda_2, ..., \lambda_m \in F λ1,λ2,...,λmF,则称和式
λ 1 a 1 + λ 2 a 2 + . . . + λ m a m \lambda_1 \bold{a_1} + \lambda_2 \bold{a_2} + ... + \lambda_m \bold{a_m} λ1a1+λ2a2+...+λmam
a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am线性组合 λ 1 , λ 2 , . . . , λ m \lambda_1, \lambda_2, ..., \lambda_m λ1,λ2,...,λm称为组合系数。如果 a \bold{a} a可以写成 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am的线性组合,则称 a \bold{a} a可以用 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am线性表示

基于此,我们可以给出线性相关与线性无关的定义如下:

定义5.2.1
a 1 , a 2 , . . . , a m ∈ F n \bold{a}_1, \bold{a}_2, ..., \bold{a}_m \in F^{n} a1,a2,...,amFn m ≥ 2 m \geq 2 m2,如果某一个向量能够用其他的向量线性表示,即存在某一个 a i \bold{a}_i ai以及一组参数 λ j ∈ F ( j ≠ i ) \lambda_j \in F(j \neq i) λjF(j=i),使得 a i = ∑ j ≠ i λ j a j \bold{a}_i = \sum_{j \neq i} \lambda_j \bold{a}_j ai=j=iλjaj,则称 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am线性相关,否则称他们线性无关

下面,我们给出线性相关的一些常用定理如下:

定理5.2.1
a 1 , a 2 , . . . , a m ∈ F n \bold{a}_1, \bold{a}_2, ..., \bold{a}_m \in F^{n} a1,a2,...,amFn,则 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am线性相关的充要条件是存在不全为0的常数 λ 1 , λ 2 , . . . , λ m \lambda_1, \lambda_2, ..., \lambda_m λ1,λ2,...,λm,使得
∑ i = 1 m λ i a i = 0 \sum_{i=1}^{m} \lambda_i \bold{a}_i = 0 i=1mλiai=0

定理5.2.2
设向量组 S 1 = { a i 1 , a i 2 , . . . , a i k } S_1 = \{\bold{a}_{i_1}, \bold{a}_{i_2}, ..., \bold{a}_{i_k} \} S1={ai1,ai2,...,aik}是向量组 S = { a 1 , a 2 , . . . , a m } S = \{\bold{a}_1, \bold{a}_2, ..., \bold{a}_m \} S={a1,a2,...,am}的一个子集,则如果 S 1 S_1 S1线性相关,那么 S S S必然线性相关;如果 S S S线性无关,则 S 1 S_1 S1也线性无关。

定理5.2.3
a i = ( a i 1 , a i 2 , . . . , a i n ) ∈ F n \bold{a}_i = (a_{i1}, a_{i2}, ..., a_{in}) \in F^{n} ai=(ai1,ai2,...,ain)Fn i = 1 , 2 , . . . , m i=1,2,...,m i=1,2,...,m。用 A \bold{A} A表示以 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am为行构成 m × n m \times n m×n阶矩阵。则 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am线性相关当且仅当关于 λ 1 , λ 2 , . . . , λ m \lambda_1, \lambda_2, ..., \lambda_m λ1,λ2,...,λm的齐次线性方程组
A T ( λ 1 . . . λ m ) = 0 \bold{A}^{T} \begin{pmatrix} \lambda_1 \\ ... \\ \lambda_m \end{pmatrix} = \bold{0} AT λ1...λm =0
有非零解,亦当且仅当 r a n k ( A ) < m rank(\bold{A}) < m rank(A)<m

推论5.2.1
a 1 , a 2 , . . . , a m ∈ F n \bold{a}_1, \bold{a}_2, ..., \bold{a}_m \in F^{n} a1,a2,...,amFn是一组数组向量,则有:

  1. m > n m > n m>n,则 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am必然线性相关;
  2. m = n m = n m=n,则 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am线性相关当且仅当 d e t ( A ) = 0 det(\bold{A}) = 0 det(A)=0
  3. m < n m < n m<n,则 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am线性相关当且仅当矩阵 A \bold{A} A的所有 m m m阶子式为零;

定理5.2.4
a i = ( a i 1 , a i 2 , . . . , a i r ) ∈ F r \bold{a}_i = (a_{i1}, a_{i2}, ..., a_{ir}) \in F^{r} ai=(ai1,ai2,...,air)Fr i = 1 , 2 , . . . , m i=1,2,...,m i=1,2,...,m。他们的加长向量组为 b i = ( a i 1 , a i 2 , . . . , a i r , . . . a i n ) ∈ F n ( n > r ) \bold{b}_i = (a_{i1}, a_{i2}, ..., a_{ir}, ... a_{in}) \in F^{n}(n>r) bi=(ai1,ai2,...,air,...ain)Fn(n>r) i = 1 , 2 , . . . , m i=1,2,...,m i=1,2,...,m,则有:

  1. a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am线性无关,则 b 1 , b 2 , . . . , b m \bold{b}_1, \bold{b}_2, ..., \bold{b}_m b1,b2,...,bm也线性无关;
  2. b 1 , b 2 , . . . , b m \bold{b}_1, \bold{b}_2, ..., \bold{b}_m b1,b2,...,bm线性相关,则 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am也线性相关;

2. 秩

要考察线性方程组的秩,我们首先需要引入极大无关组的定义。

定义5.3.1
a 1 , a 2 , . . . , a m ∈ F n \bold{a}_1, \bold{a}_2, ..., \bold{a}_m \in F^{n} a1,a2,...,amFn,若 a i 1 , a i 2 , . . . , a i r \bold{a}_{i_1}, \bold{a}_{i_2}, ..., \bold{a}_{i_r} ai1,ai2,...,air线性无关,且任意加一个其他的向量 a i r + 1 \bold{a}_{i_{r+1}} air+1 a i 1 , a i 2 , . . . , a i r , a i r + 1 \bold{a}_{i_1}, \bold{a}_{i_2}, ..., \bold{a}_{i_r}, \bold{a}_{i_{r+1}} ai1,ai2,...,air,air+1均线性相关,则称 a i 1 , a i 2 , . . . , a i r \bold{a}_{i_1}, \bold{a}_{i_2}, ..., \bold{a}_{i_r} ai1,ai2,...,air a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am的极大无关组。

对于极大无关组,我们有定理如下:

定理5.3.1
a 1 , a 2 , . . . , a m ∈ F n \bold{a}_1, \bold{a}_2, ..., \bold{a}_m \in F^{n} a1,a2,...,amFn为一组列向量, A = ( a 1 , . . . , a m ) \bold{A} = (\bold{a}_1, ..., \bold{a}_m) A=(a1,...,am)是以 a 1 , . . . , a m \bold{a}_1, ..., \bold{a}_m a1,...,am为列构成的 n × m n \times m n×m阶矩阵, A \bold{A} A经过一系列初等变换变为矩阵 B = ( b 1 , . . . , b m ) \bold{B} = (\bold{b}_1, ..., \bold{b}_m) B=(b1,...,bm),则:

  1. a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am线性相关(无关)当且仅当 b 1 , . . . , b m \bold{b}_1, ..., \bold{b}_m b1,...,bm线性相关(无关);
  2. a i 1 , a i 2 , . . . , a i r \bold{a}_{i_1}, \bold{a}_{i_2}, ..., \bold{a}_{i_r} ai1,ai2,...,air a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am的极大无关组,当且仅当 b i 1 , b i 2 , . . . , b i r \bold{b}_{i_1}, \bold{b}_{i_2}, ..., \bold{b}_{i_r} bi1,bi2,...,bir b 1 , b 2 , . . . , b m \bold{b}_1, \bold{b}_2, ..., \bold{b}_m b1,b2,...,bm的极大无关组。

在极大无关组的基础上,我们引入向量组的等价的定义:

定义5.3.2
如果向量组 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am中的每一个向量都可以用向量组 b 1 , b 2 , . . . , b l \bold{b}_1, \bold{b}_2, ..., \bold{b}_l b1,b2,...,bl线性表示,则称向量组 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am可以由向量组 b 1 , b 2 , . . . , b l \bold{b}_1, \bold{b}_2, ..., \bold{b}_l b1,b2,...,bl线性表示。
如果两个向量组 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am b 1 , b 2 , . . . , b l \bold{b}_1, \bold{b}_2, ..., \bold{b}_l b1,b2,...,bl可以相互线性表示,则称这两个向量组等价,记为:
{ a 1 , a 2 , . . . , a m } ∼ { b 1 , b 2 , . . . , b l } \{ \bold{a}_1, \bold{a}_2, ..., \bold{a}_m \} \sim \{ \bold{b}_1, \bold{b}_2, ..., \bold{b}_l \} {a1,a2,...,am}{b1,b2,...,bl}

很自然的,向量组等价满足性质:

  1. 反身性: a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am与它自身等价;
  2. 对称性:若 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am b 1 , b 2 , . . . , b l \bold{b}_1, \bold{b}_2, ..., \bold{b}_l b1,b2,...,bl等价,则 b 1 , b 2 , . . . , b l \bold{b}_1, \bold{b}_2, ..., \bold{b}_l b1,b2,...,bl a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am等价;
  3. 传递性:若 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am b 1 , b 2 , . . . , b l \bold{b}_1, \bold{b}_2, ..., \bold{b}_l b1,b2,...,bl等价,且 b 1 , b 2 , . . . , b l \bold{b}_1, \bold{b}_2, ..., \bold{b}_l b1,b2,...,bl c 1 , c 2 , . . . , c k \bold{c}_1, \bold{c}_2, ..., \bold{c}_k c1,c2,...,ck等价,则 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am c 1 , c 2 , . . . , c k \bold{c}_1, \bold{c}_2, ..., \bold{c}_k c1,c2,...,ck等价。

向量组的等价还具有如下一些定理:

定理5.3.2
一组向量组与它的任何一组极大无关组等价。

推论5.3.1
向量组的任何两个极大无关组彼此等价。

定理5.3.3
若两个线性无关向量组 { a 1 , a 2 , . . . , a r } \{ \bold{a}_1, \bold{a}_2, ..., \bold{a}_r \} {a1,a2,...,ar} { b 1 , b 2 , . . . , b s } \{ \bold{b}_1, \bold{b}_2, ..., \bold{b}_s \} {b1,b2,...,bs}等价,则 r = s r=s r=s

推论5.3.2
a i 1 , a i 2 , . . . , a i r \bold{a}_{i_1}, \bold{a}_{i_2}, ..., \bold{a}_{i_r} ai1,ai2,...,air a j 1 , a j 2 , . . . , a j s \bold{a}_{j_1}, \bold{a}_{j_2}, ..., \bold{a}_{j_s} aj1,aj2,...,ajs分别为 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am的两个极大无关组,则 r = s r=s r=s

由此,我们可以最终引入向量组的秩的定义:

定义5.3.3
向量组 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am的极大无关组元素的个数称之为向量组的秩,记为 r a n k ( a 1 , a 2 , . . . , a m ) rank(\bold{a}_1, \bold{a}_2, ..., \bold{a}_m) rank(a1,a2,...,am) r ( a 1 , a 2 , . . . , a m ) r(\bold{a}_1, \bold{a}_2, ..., \bold{a}_m) r(a1,a2,...,am)

向量组的秩具有如下性质:

定理5.3.4
设向量 a 1 , a 2 , . . . , a r ∈ F n \bold{a}_1, \bold{a}_2, ..., \bold{a}_r \in F^{n} a1,a2,...,arFn,向量 b 1 , b 2 , . . . , b s ∈ F n \bold{b}_1, \bold{b}_2, ..., \bold{b}_s \in F^{n} b1,b2,...,bsFn,则有:

  1. a 1 , a 2 , . . . , a r \bold{a}_1, \bold{a}_2, ..., \bold{a}_r a1,a2,...,ar线性无关当且仅当 r a n k ( a 1 , a 2 , . . . , a r ) = r rank(\bold{a}_1, \bold{a}_2, ..., \bold{a}_r) = r rank(a1,a2,...,ar)=r
  2. a 1 , a 2 , . . . , a r \bold{a}_1, \bold{a}_2, ..., \bold{a}_r a1,a2,...,ar线性相关当且仅当 r a n k ( a 1 , a 2 , . . . , a r ) < r rank(\bold{a}_1, \bold{a}_2, ..., \bold{a}_r) < r rank(a1,a2,...,ar)<r
  3. { b 1 , b 2 , . . . , b s } \{ \bold{b}_1, \bold{b}_2, ..., \bold{b}_s \} {b1,b2,...,bs}可以用 { a 1 , a 2 , . . . , a r } \{ \bold{a}_1, \bold{a}_2, ..., \bold{a}_r \} {a1,a2,...,ar}线性表示,则 r a n k ( b 1 , b 2 , . . . , b s ) ≤ r a n k ( a 1 , a 2 , . . . , a r ) rank(\bold{b}_1, \bold{b}_2, ..., \bold{b}_s) \leq rank(\bold{a}_1, \bold{a}_2, ..., \bold{a}_r) rank(b1,b2,...,bs)rank(a1,a2,...,ar);
  4. { \bold{b}_1, \bold{b}_2, …, \bold{b}_s } 与 与 { \bold{a}_1, \bold{a}_2, …, \bold{a}_r } 等价,则 等价,则 等价,则rank(\bold{b}_1, \bold{b}_2, …, \bold{b}_s) = rank(\bold{a}_1, \bold{a}_2, …, \bold{a}_r)$
  5. { b 1 , b 2 , . . . , b s } \{ \bold{b}_1, \bold{b}_2, ..., \bold{b}_s \} {b1,b2,...,bs}可以用 { a 1 , a 2 , . . . , a r } \{ \bold{a}_1, \bold{a}_2, ..., \bold{a}_r \} {a1,a2,...,ar}线性表示,且 b 1 , b 2 , . . . , b s \bold{b}_1, \bold{b}_2, ..., \bold{b}_s b1,b2,...,bs线性无关,则 s ≤ r s \leq r sr;
  6. 向量 b \bold{b} b可以表示成 a 1 , a 2 , . . . , a r \bold{a}_1, \bold{a}_2, ..., \bold{a}_r a1,a2,...,ar的线性组合,当且仅当 r a n k ( a 1 , a 2 , . . . , a r ) = r a n k ( a 1 , a 2 , . . . , a r , b ) rank(\bold{a}_1, \bold{a}_2, ..., \bold{a}_r) = rank(\bold{a}_1, \bold{a}_2, ..., \bold{a}_r, \bold{b}) rank(a1,a2,...,ar)=rank(a1,a2,...,ar,b);

定理5.3.5
任何矩阵的行秩等于它的列秩等于该矩阵的秩;

推论5.3.3
n n n阶方阵 A \bold{A} A可逆 ⇔ r a n k ( A ) = n ⇔ \Leftrightarrow rank(\bold{A}) = n \Leftrightarrow rank(A)=n A \bold{A} A的行(列)向量线性无关。

推论5.3.4
r a n k ( A ) = r rank(\bold{A}) = r rank(A)=r,则 A \bold{A} A的不等于0的 r r r阶子式所在的行(列)构成 A \bold{A} A的行(列)向量的极大无关组。

3. 子空间、基与维数

要介绍子空间的内容,我们首先引入向量的生成子空间定义:

定义 5.4.1
a 1 , a 2 , . . . , a m ∈ F n \bold{a}_1, \bold{a}_2, ..., \bold{a}_m \in F^{n} a1,a2,...,amFn是一组向量,称集合
⟨ a 1 , a 2 , . . . , a m ⟩ : = { ∑ i = 1 m λ i a i ∣ λ i ∈ F , i = 1 , 2 , . . . , m } \langle \bold{a}_1, \bold{a}_2, ..., \bold{a}_m \rangle := \{ \sum_{i=1}^{m} \lambda_i \bold{a}_i | \lambda_i \in F, i=1,2,..., m \} a1,a2,...,am:={i=1mλiaiλiF,i=1,2,...,m}
为向量组 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am生成的 F n F^{n} Fn的子空间 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am称为生成子空间的生成元
给定一个矩阵 A ∈ F m × n \bold{A} \in F^{m \times n} AFm×n,由 A \bold{A} A的行向量生成的子空间称为行空间;由 A \bold{A} A的列向量生成的子空间称为列空间

生成子空间具有如下性质:

命题5.4.1
b 1 , b 2 , . . . , b k ∈ ⟨ a 1 , a 2 , . . . , a m ⟩ \bold{b}_1, \bold{b}_2, ..., \bold{b}_k \in \langle \bold{a}_1, \bold{a}_2, ..., \bold{a}_m \rangle b1,b2,...,bka1,a2,...,am,则 b 1 , b 2 , . . . , b k \bold{b}_1, \bold{b}_2, ..., \bold{b}_k b1,b2,...,bk的任意线性组合都属于 ⟨ a 1 , a 2 , . . . , a m ⟩ \langle \bold{a}_1, \bold{a}_2, ..., \bold{a}_m \rangle a1,a2,...,am

定理5.4.1
a i , b j , b \bold{a}_i, \bold{b}_j, \bold{b} ai,bj,b均为 F n F^{n} Fn中的向量,其中 i = 1 , . . . , m i=1,...,m i=1,...,m j = 1 , . . . , l j=1,...,l j=1,...,l。则下列结论成立:

  1. 向量组 a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am b 1 , b 2 , . . . , b l \bold{b}_1, \bold{b}_2, ..., \bold{b}_l b1,b2,...,bl等价,当接近当 ⟨ a 1 , a 2 , . . . , a m ⟩ = ⟨ b 1 , b 2 , . . . , b l ⟩ \langle \bold{a}_1, \bold{a}_2, ..., \bold{a}_m \rangle = \langle \bold{b}_1, \bold{b}_2, ..., \bold{b}_l \rangle a1,a2,...,am=b1,b2,...,bl
  2. a 1 , a 2 , . . . , a m ( m ≥ 2 ) \bold{a}_1, \bold{a}_2, ..., \bold{a}_m (m \geq 2) a1,a2,...,am(m2)线性相关,当且仅当存在 i i i使得 a i ∈ ⟨ a j ∣ j ≠ i ⟩ \bold{a}_i \in \langle \bold{a}_j | j \neq i \rangle aiajj=i,亦即 ⟨ a i ⟩ = ⟨ a j ∣ j ≠ i ⟩ \langle \bold{a}_i \rangle = \langle \bold{a}_j | j \neq i \rangle ai=ajj=i;
  3. a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am线性无关,当且仅当对任意 i i i均有 a i ∉ ⟨ a j ∣ j ≠ i ⟩ \bold{a}_i \notin \langle \bold{a}_j | j \neq i \rangle ai/ajj=i,亦即 ⟨ a i ⟩ ≠ ⟨ a j ∣ j ≠ i ⟩ \langle \bold{a}_i \rangle \neq \langle \bold{a}_j | j \neq i \rangle ai=ajj=i;
  4. a i 1 , a i 2 , . . . , a i r \bold{a}_{i_1}, \bold{a}_{i_2}, ..., \bold{a}_{i_r} ai1,ai2,...,air a 1 , a 2 , . . . , a m \bold{a}_1, \bold{a}_2, ..., \bold{a}_m a1,a2,...,am的极大无关组,当且仅当 ⟨ a i 1 , a i 2 , . . . , a i r ⟩ = ⟨ a 1 , a 2 , . . . , a m ⟩ \langle \bold{a}_{i_1}, \bold{a}_{i_2}, ..., \bold{a}_{i_r} \rangle = \langle \bold{a}_1, \bold{a}_2, ..., \bold{a}_m \rangle ai1,ai2,...,air=a1,a2,...,am a i 1 , a i 2 , . . . , a i r \bold{a}_{i_1}, \bold{a}_{i_2}, ..., \bold{a}_{i_r} ai1,ai2,...,air线性无关;
  5. 线性方程组 ∑ i x i a i = b \sum_{i}x_i\bold{a}_i = \bold{b} ixiai=b有解当且仅当 b ∈ ⟨ a 1 , a 2 , . . . , a m ⟩ \bold{b} \in \langle \bold{a}_1, \bold{a}_2, ..., \bold{a}_m \rangle ba1,a2,...,am,当且仅当 ⟨ a 1 , a 2 , . . . , a m ⟩ = ⟨ a 1 , a 2 , . . . , a m , b ⟩ \langle \bold{a}_1, \bold{a}_2, ..., \bold{a}_m \rangle = \langle \bold{a}_1, \bold{a}_2, ..., \bold{a}_m, \bold{b} \rangle a1,a2,...,am=a1,a2,...,am,b

在生成子空间的基础上,我们给出子空间的两种定义:

定义5.4.2
V ⊂ F n V \subset F^{n} VFn为非空向量集合,它满足:
对任意 a 1 , a 2 , . . . , a m ∈ V \bold{a}_1, \bold{a}_2, ..., \bold{a}_m \in V a1,a2,...,amV λ 1 , . . . , λ m ∈ F \lambda_1, ..., \lambda_m \in F λ1,...,λmF,都有 ∑ i = 1 m ∈ V \sum_{i=1}^{m} \in V i=1mV,则称 V V V F n F^{n} Fn子空间

定义5.4.3
V ⊂ F n V \subset F^{n} VFn为非空向量集合,它满足:

  1. a , b ∈ V \bold{a,b} \in V a,bV,则 a + b ∈ V \bold{a+b} \in V a+bV
  2. a ∈ V \bold{a} \in V aV λ ∈ F \lambda \in F λF,则 λ a ∈ V \lambda \bold{a} \in V λaV;

则称 V V V F n F^n Fn子空间

对于任意一个子空间,我们有如下定理:

定理5.4.2
设非空集合 V V V F n F^n Fn的子空间,则存在线性无关的向量组 a 1 , a 2 , . . . , a r \bold{a}_1, \bold{a}_2, ..., \bold{a}_r a1,a2,...,ar,使得 V = ⟨ a 1 , a 2 , . . . , a r ⟩ V = \langle \bold{a}_1, \bold{a}_2, ..., \bold{a}_r \rangle V=a1,a2,...,ar

亦即任意子空间总可以表示为一些线性无关的向量的生成子空间。

因此,我们就给可以给出子空间的基的定义:

定义5.4.4
V ⊂ F n V \subset F^n VFn是子空间, V V V中的一组向量 { a 1 , a 2 , . . . , a r } \{ \bold{a}_1, \bold{a}_2, ..., \bold{a}_r \} {a1,a2,...,ar}称为 V V V的一组,如果其满足:

  1. 对任意向量 a ∈ V \bold{a} \in V aV a \bold{a} a可以唯一地表示为 a 1 , a 2 , . . . , a r \bold{a}_1, \bold{a}_2, ..., \bold{a}_r a1,a2,...,ar的线性组合: a = ∑ i = 1 r λ i a i \bold{a} = \sum_{i=1}^{r} \lambda_i \bold{a_i} a=i=1rλiai
  2. a 1 , a 2 , . . . , a r \bold{a}_1, \bold{a}_2, ..., \bold{a}_r a1,a2,...,ar线性无关。

( λ 1 , . . . λ r ) (\lambda_1, ... \lambda_r) (λ1,...λr)为向量 a \bold{a} a在基 { a 1 , a 2 , . . . , a r } \{ \bold{a}_1, \bold{a}_2, ..., \bold{a}_r \} {a1,a2,...,ar}下的坐标
V V V的一组基的向量个数称为 V V V维数,记作 d i m V dimV dimV

我们有定理:

定理5.4.3
n n n为数组空间 F n F^n Fn中的下列结论成立:

  1. V ⊂ F n V \subset F^n VFn r r r维子空间,则 V V V中任意 r + 1 r+1 r+1个向量线性相关;
  2. V V V r r r维子空间,则 V V V中任意 r r r个线性无关向量为 V V V的一组基;
  3. U U U V V V F n F^n Fn的子空间,且 U ⊆ V U \subseteq V UV,则 d i m U ≤ d i m V dimU \leq dimV dimUdimV
  4. U U U V V V F n F^n Fn的子空间,且 U ⊆ V U \subseteq V UV,若 d i m U = d i m V dimU = dimV dimU=dimV,则 U = V U = V U=V

4. 一般线性空间

上面,我们介绍了数组向量中的子空间等定义,这里,我们将会介绍一下一般的线性空间,它不局限于数组向量,而是针对一般的集合。

我们给出一般的线性空间的定义如下:

定义5.6.1
V V V是一个非空集合, F F F是一个数域,对 V V V中的元素定义两种运算:

  1. 加法:对 V V V中的任意两个元素 α , β \bold{\alpha, \beta} α,β组成的有序对 ( α , β ) (\bold{\alpha, \beta}) (α,β) V V V中存在唯一的一个元素 γ \bold{\gamma} γ与之相对应,简记为 α + β = γ \bold{\alpha + \beta = \gamma} α+β=γ
  2. 数乘:对任意常数 λ ∈ F \lambda \in F λF及向量 α ∈ V \alpha \in V αV V V V中存在唯一地一个元素 γ \gamma γ与之对应,简记为 λ α = γ \lambda \bold{\alpha} = \bold{\gamma} λα=γ

加法与数乘运算满足下列运算规律:

  1. 加法交换律: α + β = β + α \bold{\alpha + \beta = \beta + \alpha} α+β=β+α
  2. 加法结合律: ( α + β ) + γ = α + ( β + γ ) \bold{(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)} (α+β)+γ=α+(β+γ)
  3. 零向量:存在元素 θ ∈ V \bold{\theta} \in V θV使得 α + θ = θ + α = α \bold{\alpha + \theta = \theta + \alpha = \alpha} α+θ=θ+α=α对任意 α ∈ V \bold{\alpha} \in V αV成立, θ \bold{\theta} θ称为零元素,通常简记为 0 \bold{0} 0;
  4. 对任意 α ∈ V \bold{\alpha} \in V αV,存在唯一的 β ∈ V \bold{\beta} \in V βV,使得 α + β = β + α = 0 \bold{\alpha + \beta = \beta + \alpha = 0} α+β=β+α=0 β \bold{\beta} β称为 α \bold{\alpha} α的负元素,简记为 − α -\bold{\alpha} α
  5. 对任意 λ ∈ F \lambda \in F λF α , β ∈ V \bold{\alpha, \beta} \in V α,βV λ ( α + β ) = λ α + λ β \lambda (\bold{\alpha + \beta}) = \lambda \bold{\alpha} + \lambda \bold{\beta} λ(α+β)=λα+λβ;
  6. 对任意 λ , μ ∈ F \lambda, \mu \in F λ,μF α ∈ V \bold{\alpha} \in V αV ( λ + μ ) α = λ α + μ α (\lambda + \mu) \bold{\alpha} = \lambda \bold{\alpha} + \mu\bold{\alpha} (λ+μ)α=λα+μα;
  7. 对任意 λ , μ ∈ F \lambda, \mu \in F λ,μF α ∈ V \bold{\alpha} \in V αV λ ( μ α ) = ( λ μ ) α \lambda (\mu \bold{\alpha}) = (\lambda \mu) \bold{\alpha} λ(μα)=(λμ)α
  8. 1 α = α 1\bold{\alpha} = \bold{\alpha} 1α=α对任意 α ∈ V \bold{\alpha} \in V αV成立。

则称 V V V是数域 F F F上的线性空间,简记为 V ( F ) V(F) V(F) V V V
线性空间 V V V中的元素称为向量

线性空间具有如下性质:

  1. 零向量唯一;
  2. 负向量唯一;
  3. 0 α = 0 0\bold{\alpha}=\bold{0} 0α=0;
  4. ( − 1 ) α = − α (-1)\bold{\alpha} = -\bold{\alpha} (1)α=α;
  5. λ 0 = 0 \lambda \bold{0} = \bold{0} λ0=0
  6. λ α = 0 \lambda \bold{\alpha} = \bold{0} λα=0当且仅当 α = 0 \bold{\alpha} = \bold{0} α=0或者 λ = 0 \lambda = 0 λ=0;

对于一般的线性空间,我们同样可以给出子空间等定义如下:

定义5.6.2
V V V是数域 F F F上的线性空间,给定 V V V中的一组向量 S = { α 1 , α 2 , . . . , α m } S = \{ \bold{\alpha}_1, \bold{\alpha}_2, ..., \bold{\alpha}_m \} S={α1,α2,...,αm}及一组数 λ 1 , . . . , λ m ∈ F \lambda_1, ..., \lambda_m \in F λ1,...,λmF,称和式
λ 1 α 1 + . . . + λ m α m \lambda_1 \bold{\alpha}_1 + ... + \lambda_m \bold{\alpha}_m λ1α1+...+λmαm
为向量组 S S S线性组合 λ 1 , . . . , λ m \lambda_1, ..., \lambda_m λ1,...,λm称为组合系数,如果 α \bold{\alpha} α可以写成 S S S的线性组合,则称 α \bold{\alpha} α可以用 S S S线性表示
向量组 S S S的线性组合的全体
⟨ S ⟩ : = ⟨ α 1 , . . . , α m ⟩ : = { λ 1 α 1 + . . . + λ m α m ∣ λ 1 , . . . , λ m ∈ F } \langle S \rangle := \langle \bold{\alpha}_1, ..., \bold{\alpha}_m \rangle := \{ \lambda_1 \bold{\alpha}_1 + ... + \lambda_m \bold{\alpha}_m | \lambda_1, ..., \lambda_m \in F \} S:=α1,...,αm:={λ1α1+...+λmαmλ1,...,λmF}
称为 V V V生成子空间 α 1 , . . . , α m \bold{\alpha}_1, ..., \bold{\alpha}_m α1,...,αm称为生成子空间的生成元

定义5.6.3
V V V是数域 F F F上的线性空间,称向量组 T = ⟨ β 1 , . . . , β l ⟩ T = \langle \bold{\beta}_1, ..., \bold{\beta}_l \rangle T=β1,...,βl可以由向量组 S = ⟨ α 1 , . . . , α m ⟩ S = \langle \bold{\alpha}_1, ..., \bold{\alpha}_m \rangle S=α1,...,αm线性表示,如果每一个 β i \bold{\beta}_i βi均可以用向量组 S S S线性表示。
如果向量组 S S S T T T可以相互线性表示,则称 S S S T T T等价

定理5.6.1
S S S T T T是线性空间 V V V的两个向量组,则:

  1. T T T可以由 S S S线性表示,当且仅当 ⟨ T ⟩ ⊂ ⟨ S ⟩ \langle T \rangle \subset \langle S \rangle TS;
  2. U U U可以由 T T T线性表示, T T T可以由 S S S线性表示,则 U U U可以由 S S S线性表示;
  3. S S S T T T等价,当且仅当 ⟨ S ⟩ = ⟨ T ⟩ \langle S \rangle = \langle T \rangle S=T;
  4. U U U T T T等价, T T T S S S等价,则 U U U S S S等价。

定义5.6.4
V V V是数域 F F F上的线性空间, S S S V V V中的一组向量。如果 S S S中的某个向量能用其他向量线性表示,则称 S S S线性相关,反之则称为线性无关。
特别的,如果一个向量组成的向量组线性相关,当且仅当该向量为零向量。

定理5.6.2
α 1 , . . . , α m ( m ≥ 2 ) \bold{\alpha}_1, ..., \bold{\alpha}_m (m \geq 2) α1,...,αm(m2)是线性空间 V V V中的向量,则下列说法等价:

  1. α 1 , . . . , α m \bold{\alpha}_1, ..., \bold{\alpha}_m α1,...,αm线性相关;
  2. 存在不全为零的常数 λ 1 , . . . , λ m ∈ F \lambda_1, ..., \lambda_m \in F λ1,...,λmF,使得 ∑ i = 1 m λ i α i = 0 \sum_{i=1}^{m} \lambda_i \bold{\alpha}_i = 0 i=1mλiαi=0;
  3. 存在向量 α i \bold{\alpha}_i αi使得 α i = ∑ j ≠ i λ j α j \bold{\alpha}_i = \sum_{j \neq i} \lambda_j \bold{\alpha}_j αi=j=iλjαj;
  4. 存在向量 α i \bold{\alpha}_i αi使得 α i ∈ ⟨ α 1 , . . . , α i − 1 , α i + 1 , . . . α m ⟩ \bold{\alpha}_i \in \langle \bold{\alpha}_1, ..., \bold{\alpha}_{i-1}, \bold{\alpha}_{i+1}, ... \bold{\alpha}_m \rangle αiα1,...,αi1,αi+1,...αm;
  5. 存在向量 α i \bold{\alpha}_i αi使得 ⟨ α 1 , . . . , α m ⟩ = ⟨ α 1 , . . . , α i − 1 , α i + 1 , . . . α m ⟩ \langle \bold{\alpha}_1, ..., \bold{\alpha}_m \rangle = \langle \bold{\alpha}_1, ..., \bold{\alpha}_{i-1}, \bold{\alpha}_{i+1}, ... \bold{\alpha}_m \rangle α1,...,αm=α1,...,αi1,αi+1,...αm;

定理5.6.3
设向量组 S 1 S_1 S1是向量组 S S S的一个自己,那么,如果 S 1 S_1 S1线性相关,则 S S S也线性相关;如果 S S S线性无关,则 S 1 S_1 S1也线性无关。

定义5.6.5
S S S是线性空间 V V V中的向量组,若 S S S的子集 S 1 S_1 S1线性无关,且任加 S S S中的一个其他向量 α \bold{\alpha} α后, S 1 ∪ ⟨ α ⟩ S_1 \cup \langle \bold{\alpha} \rangle S1α线性相关,则称 S 1 S_1 S1为向量组 S S S极大无关组

定理5.6.4
向量组的极大无关组有下列等价的说法:

  1. 向量组 S S S的子集 S 1 S_1 S1 S S S的极大无关组;
  2. 向量组 S S S可以由子集 S 1 S_1 S1线性表示,且 S 1 S_1 S1线性无关;
  3. 向量组 S S S与它的子集 S 1 S_1 S1等价,且 S 1 S_1 S1线性无关;
  4. ⟨ S ⟩ = ⟨ S 1 ⟩ \langle S \rangle = \langle S_1 \rangle S=S1,且 S 1 S_1 S1线性无关;

推论5.6.1
向量组的任意两个极大无关组彼此等价;

定理5.6.5
两个等价向量组 ⟨ α 1 , . . . , α r ⟩ \langle \bold{\alpha}_1, ..., \bold{\alpha}_r \rangle α1,...,αr ⟨ b e t a 1 , . . . , β s ⟩ \langle \bold{beta}_1, ..., \bold{\beta}_s \rangle beta1,...,βs分别线性无关,则 r = s r=s r=s

推论5.6.2
α i 1 , . . . , α i r \bold{\alpha}_{i_1}, ..., \bold{\alpha}_{i_r} αi1,...,αir α j 1 , . . . , α j s \bold{\alpha}_{j_1}, ..., \bold{\alpha}_{j_s} αj1,...,αjs分别是 α 1 , . . . , α m \bold{\alpha}_1, ..., \bold{\alpha}_m α1,...,αm的两个极大无关组,则 r = s r=s r=s

定义5.6.6
向量组 S S S的极大无关组的向量的个数称为向量组的,即为 r a n k ( S ) rank(S) rank(S)或者 r ( S ) r(S) r(S)

定理5.6.6
S , T S, T S,T是线性空间 V V V中的有限向量组,则有如下结论:

  1. S S S线性无关当且仅当 r a n k ( S ) = # S rank(S) = \#S rank(S)=#S;
  2. S S S线性相关当且仅当 r a n k ( S ) < # S rank(S) < \#S rank(S)<#S;
  3. T T T可以用 S S S线性表示,则 r a n k ( T ) ≤ r a n k ( S ) rank(T) \leq rank(S) rank(T)rank(S);
  4. T T T S S S等价,则 r a n k ( T ) = r a n k ( S ) rank(T) = rank(S) rank(T)=rank(S);
  5. T T T可以用 S S S线性表示,且 T T T线性无关,则 # T ≤ # S \#T \leq \#S #T#S;

定义5.6.7
V V V是数域 F F F上的线性空间, S S S V V V中一组线性无关向量。如果 V V V中任何向量都能表示成 S S S的线性组合,则称 S S S V V V的一组。若 S S S是有限的,则称 V V V有限维线性空间 S S S中的元素的个数称为线性空间 V V V维数,记为 d i m V dimV dimV。若 S S S是无限的,则称 V V V无限维线性空间,其维数为无穷大。
设基为 S = { α 1 , . . . , α n } S = \{ \bold{\alpha}_1, ..., \bold{\alpha}_n \} S={α1,...,αn}是有限的,则任意向量 α ∈ V \bold{\alpha} \in V αV可以唯一地表示为 S S S的线性组合
α = λ 1 α 1 + . . . + λ n α n \bold{\alpha} = \lambda_1 \bold{\alpha}_1 + ... + \lambda_n \bold{\alpha}_n α=λ1α1+...+λnαn
( λ 1 , . . . , λ n ) (\lambda_1, ..., \lambda_n) (λ1,...,λn)为向量 α \bold{\alpha} α在基 S S S下的坐标。

定理5.6.7
V V V是数域 F F F上的 n n n维线性空间,则有:

  1. V V V中任意 n + 1 n+1 n+1个向量线性相关;
  2. V V V中任意 n n n个线性无关向量为一组基;
  3. α 1 , . . . , α r ∈ V \bold{\alpha}_1, ..., \bold{\alpha}_r \in V α1,...,αrV r ( r < n ) r(r<n) r(r<n)个线性无关的向量,则存在 V V V中的向量 α r + 1 , . . . , α n \bold{\alpha}_{r+1}, ..., \bold{\alpha}_n αr+1,...,αn使得 α 1 , . . . , α n \bold{\alpha}_1, ..., \bold{\alpha}_n α1,...,αn构成 V V V中的一组基,称 α 1 , . . . , α n \bold{\alpha}_1, ..., \bold{\alpha}_n α1,...,αn为线性无关组 α 1 , . . . , α r \bold{\alpha}_1, ..., \bold{\alpha}_r α1,...,αr的一组扩充基

5. 同构

最后,我们来稍微引入了一下线性空间的同构定义。

定义5.7.1
V 1 , V 2 V_1, V_2 V1,V2是数域 F F F上的两个线性空间,如果存在一一映射 σ : V 1 → V 2 \sigma : V_1 \rightarrow V_2 σ:V1V2满足:

  1. 对任意 x , y ∈ V 1 \bold{x,y} \in V_1 x,yV1, σ ( x + y ) = σ ( x ) + σ ( y ) \sigma(\bold{x+y}) = \sigma(\bold{x}) + \sigma(\bold{y}) σ(x+y)=σ(x)+σ(y);
  2. 对任意 λ ∈ F \lambda \in F λF, x ∈ V 1 \bold{x} \in V_1 xV1 σ ( λ x ) = λ σ ( x ) \sigma(\lambda \bold{x}) = \lambda \sigma(\bold{x}) σ(λx)=λσ(x).

则称线性空间 V 1 , V 2 V_1, V_2 V1,V2同构,记为 V 1 ∼ V 2 V_1 \sim V_2 V1V2 σ \sigma σ称为同构映射
V 1 = V 2 V_1 = V_2 V1=V2时,称 σ \sigma σ自同构

对于同构,有如下定理:

定理5.7.1
V 1 , V 2 , V 3 V_1, V_2, V_3 V1,V2,V3是数域 F F F上的线性空间,则有:

  1. d i m V 1 = n dimV_1 = n dimV1=n,则 V 1 V_1 V1 n n n维数组空间 F n F^n Fn同构;
  2. σ \sigma σ V 1 → V 2 V_1 \rightarrow V_2 V1V2的同构映射,则 σ − 1 \sigma^{-1} σ1 V 2 → V 1 V_2 \rightarrow V_1 V2V1的同构映射;
  3. V 1 V_1 V1 V 2 V_2 V2同构, V 2 V_2 V2 V 3 V_3 V3同构,则 V 1 V_1 V1 V 3 V_3 V3同构。

定理5.7.2
V 1 , V 2 V_1, V_2 V1,V2是数域 F F F上的线性空间, σ : V 1 → V 2 \sigma: V_1 \rightarrow V_2 σ:V1V2是同构映射,则:

  1. σ ( 0 1 ) = 0 2 \sigma(\bold{0}_1) = \bold{0}_2 σ(01)=02,其中, 0 1 , 0 2 \bold{0}_1, \bold{0}_2 01,02分别是 V 1 , V 2 V_1, V_2 V1,V2的零元素;
  2. σ ( − α ) = − σ ( α ) \sigma(-\bold{\alpha}) = -\sigma(\bold{\alpha}) σ(α)=σ(α);
  3. σ ( ∑ i = 1 m λ i α i ) = ∑ i = 1 m λ i σ ( α i ) \sigma(\sum_{i=1}^{m} \lambda_i \bold{\alpha}_i) = \sum_{i=1}^{m}\lambda_i \sigma(\bold{\alpha}_i) σ(i=1mλiαi)=i=1mλiσ(αi);
  4. V 1 V_1 V1中向量组 S S S线性无关(相关)当且仅当 σ ( S ) \sigma(S) σ(S) V 2 V_2 V2当中线性无关(相关);
  5. M M M V 1 V_1 V1的基当且仅当 σ ( M ) \sigma(M) σ(M) V 2 V_2 V2的基;
  6. d i m V 1 = d i m V 2 dimV_1 = dimV_2 dimV1=dimV2

定理5.7.3
数域 F F F上的线性空间 V 1 V_1 V1 V 2 V_2 V2同构的充要条件是 d i m V 1 = d i m V 2 dimV_1 = dimV_2 dimV1=dimV2

2. 线性变换

1. 定义 & 性质

定义6.1.1
V , V 1 V, V_1 V,V1是数域 F F F上的两个线性空间,若映射 A : V → V ′ \mathcal{A}: V \rightarrow V' A:VV满足:
对任意 x , y ∈ V , λ ∈ F \bold{x, y} \in V, \lambda \in F x,yV,λF,都有:

  1. A ( x + y ) = A ( x ) + A ( y ) \mathcal{A}(\bold{x+y}) = \mathcal{A}(\bold{x}) + \mathcal{A}(\bold{y}) A(x+y)=A(x)+A(y)
  2. A ( λ x ) = λ A ( x ) \mathcal{A}(\lambda \bold{x}) = \lambda \mathcal{A}(\bold{x}) A(λx)=λA(x)

则称 A \mathcal{A} A为从线性空间 V V V到线性空间 V ′ V' V线性映射
特别的,如果 V = V ′ V = V' V=V,则称 A \mathcal{A} A为线性空间 V V V上的一个线性变化

有性质:

定理6.1.1
V V V是数域 F F F上的线性空间, A \mathcal{A} A V V V上的线性变换, A \mathcal{A} A具有以下性质:

  1. A ( 0 ) = 0 \mathcal{A}(\bold{0}) = \bold{0} A(0)=0;
  2. A ( − a ) = − a , a ∈ V \mathcal{A}(-\bold{a}) = - \mathcal{\bold{a}}, \bold{a} \in V A(a)=a,aV;
  3. a 1 , . . . a n \bold{a}_1, ... \bold{a}_n a1,...an为线性空间 V V V的一组基,若 a = λ 1 a 1 + . . . + λ n a n \bold{a} = \lambda_1 \bold{a}_1 + ... + \lambda_n \bold{a}_n a=λ1a1+...+λnan,则
    A ( a ) = λ 1 A ( a 1 ) + . . . + λ n A ( a n ) \mathcal{A}(\bold{a}) = \lambda_1 \mathcal{A}(\bold{a}_1) + ... + \lambda_n \mathcal{A}(\bold{a}_n) A(a)=λ1A(a1)+...+λnA(an);
  4. a 1 , . . . a m \bold{a}_1, ... \bold{a}_m a1,...am V V V中线性相关的向量,则 A ( a 1 ) , . . . , A ( a m ) \mathcal{A}(\bold{a}_1), ..., \mathcal{A}(\bold{a}_m) A(a1),...,A(am)也线性相关。

2. 矩阵表达

线性变换本质上可以视为线性空间上的两组向量之间的变化关系,我们可以将其放到两组基当中进行表达,即可以将其视为两个基底之间的线性变换。

A ( α 1 , . . . , α n ) = ( α 1 , . . . , α n ) ( a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ) \mathcal{A}{\bold{(\alpha_1, ..., \alpha_n)}} = \bold{(\alpha_1, ..., \alpha_n)} \begin{pmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ a_{n1} & a_{n2} & ... & a_{nn} \end{pmatrix} A(α1,...,αn)=(α1,...,αn) a11a21...an1a12a22...an2............a1na2n...ann

因此,我们可以将矩阵 A = ( a i j ) \bold{A} = (a_{ij}) A=(aij)称为线性变换 A \mathcal{A} A在基 α 1 , . . . , α n \bold{\alpha}_1, ..., \bold{\alpha}_n α1,...,αn下的变换矩阵。

我们有定理:

定理6.2.1
设线性变换 A : V → V \mathcal{A}: V \rightarrow V A:VV在基 α 1 , . . . , α n \bold{\alpha}_1, ..., \bold{\alpha}_n α1,...,αn下的矩阵为 A \bold{A} A,设 x , y ∈ V \bold{x, y} \in V x,yV,且 y = A ( x ) \bold{y} = \mathcal{A}(\bold{x}) y=A(x),若 x , y \bold{x, y} x,y在基 α 1 , . . . , α n \bold{\alpha}_1, ..., \bold{\alpha}_n α1,...,αn下的坐标分别为 X , Y \bold{X, Y} X,Y,则:
Y = A X \bold{Y} = \bold{AX} Y=AX

我们将数域 F F F上的 n n n维线性空间 V V V上的全体线性变换所构成的集合记为 L ( V ) \bold{L}(V) L(V),将数域 F F F上的 n n n阶方阵的构成的集合记为 M n ( F ) \bold{M}_n(F) Mn(F),则有:

定理6.2.2
V V V为数域 F F F上的 n n n维线性空间, α 1 , . . . , α n \bold{\alpha}_1, ..., \bold{\alpha}_n α1,...,αn V V V的一组基。则存在一一映射 Φ : L ( V ) → M n ( F ) \Phi:\bold{L}(V) \rightarrow \bold{M}_n(F) Φ:L(V)Mn(F),使得对每个 A ∈ L ( V ) \mathcal{A} \in \bold{L}(V) AL(V) Φ ( A ) \Phi(\mathcal{A}) Φ(A) A \mathcal{A} A在基 α 1 , . . . , α n \bold{\alpha}_1, ..., \bold{\alpha}_n α1,...,αn下的矩阵。

我们定义线性变换的运算:

  1. A + B ( x ) = A ( x ) + A ( y ) \mathcal{A+B}(\bold{x}) = \mathcal{A}(\bold{x}) + \mathcal{A}(\bold{y}) A+B(x)=A(x)+A(y)
  2. ( λ A ) ( x ) = λ A ( x ) (\lambda \mathcal{A})(\bold{x}) = \lambda \mathcal{A}(\bold{x}) (λA)(x)=λA(x)
  3. ( B ∘ A ) ( x ) = B ( A ( x ) ) (\mathcal{B} \circ \mathcal{A})(\bold{x}) = \mathcal{B}(\mathcal{A}(\bold{x})) (BA)(x)=B(A(x))

我们有定理:

定理6.2.3
Φ : L ( V ) → M n ( F ) \Phi: \bold{L}(V) \rightarrow \bold{M}_n(F) Φ:L(V)Mn(F)为前述定理6.2.2中定义的映射,则对 A , B ∈ L ( V ) , λ ∈ F \mathcal{A,B} \in \bold{L}(V), \lambda \in F A,BL(V),λF,有:

  1. Φ ( A + B ) = Φ ( A ) + Φ ( B ) \Phi(\mathcal{A+B}) = \Phi(\mathcal{A}) + \Phi(\mathcal{B}) Φ(A+B)=Φ(A)+Φ(B)
  2. Φ ( λ A ) = λ Φ ( A ) \Phi(\lambda \mathcal{A}) = \lambda \Phi(\mathcal{A}) Φ(λA)=λΦ(A)
  3. Φ ( B ∘ A ) = Φ ( B ) ⋅ Φ ( A ) \Phi(\mathcal{B} \circ \mathcal{A}) = \Phi(\mathcal{B}) \cdot \Phi(\mathcal{A}) Φ(BA)=Φ(B)Φ(A)

3. 矩阵的相似

定理 6.3.1
设线性变换 A : V → V \mathcal{A}: V \rightarrow V A:VV V V V的两组基 α 1 , . . . , α n \bold{\alpha}_1, ..., \bold{\alpha}_n α1,...,αn β 1 , . . . , β n \bold{\beta}_1, ..., \bold{\beta}_n β1,...,βn的矩阵分别为 A \bold{A} A B \bold{B} B。设基 α 1 , . . . , α n \bold{\alpha}_1, ..., \bold{\alpha}_n α1,...,αn到基 β 1 , . . . , β n \bold{\beta}_1, ..., \bold{\beta}_n β1,...,βn的过渡矩阵为 T T T,即 ( β 1 , . . . , β n ) = ( α 1 , . . . , α n ) T (\bold{\beta}_1, ..., \bold{\beta}_n) = (\bold{\alpha}_1, ..., \bold{\alpha}_n)\bold{T} (β1,...,βn)=(α1,...,αn)T,则有:
B = T − 1 A T \bold{B} = \bold{T^{-1}AT} B=T1AT

基于此,我们可以给出矩阵的相似定义:

定义6.3.1
A , B \bold{A, B} A,B为数域 F F F上的两个 n n n阶方阵,如果存在数域 F F F上的 n n n阶可逆方阵 T \bold{T} T,使得 B = T − 1 A T \bold{B} = \bold{T^{-1}AT} B=T1AT,则称 A \bold{A} A b o l d B bold{B} boldB在数域 F F F相似,记为 A ∼ B \bold{A} \sim \bold{B} AB

对于相似的矩阵,有如下命题:

命题6.3.1
矩阵的相似关系为等价关系,即满足以下三个条件:

  1. 反身性: A \bold{A} A A \bold{A} A相似;
  2. 对称性:若 A \bold{A} A B \bold{B} B相似,则 B \bold{B} B A \bold{A} A相似;
  3. 传递性:若 A \bold{A} A B \bold{B} B相似, B \bold{B} B C \bold{C} C相似,则 b o l d A bold{A} boldA C \bold{C} C相似。

4. 特征值 & 特征向量

定义 6.4.1
A \bold{A} A为数域 F F F上的 n n n阶方阵,如果存在 λ ∈ F \lambda \in F λF及非零列向量 x ∈ F n \bold{x} \in F^{n} xFn,使得 A x = λ x \bold{Ax} = \lambda \bold{x} Ax=λx,则称 λ \lambda λ为方阵 A \bold{A} A的一个特征值,而称 x x x为属于特征值 λ \lambda λ的一个特征向量
定义 V A ( λ ) : = { α ∈ V ∣ A α = λ α } V_{\mathcal{A}}(\lambda) := \{ \bold{\alpha} \in V | \mathcal{A}\bold{\alpha} = \lambda \bold{\alpha}\} VA(λ):={αVAα=λα}为特征值 λ \lambda λ的特征子空间。

对于矩阵 A \bold{A} A,定义矩阵 A \bold{A} A的特征多项式 p A ( λ ) p_{\bold{A}}(\lambda) pA(λ)为:
d e t ( λ I − A ) = ∣ λ − a 11 − a 12 . . . − a 1 n − a 21 λ − a 22 . . . − a 2 n . . . . . . . . . . . . − a n 1 − a n 2 . . . λ − a n n ∣ = 0 det(\lambda \bold{I} - \bold{A}) = \begin{vmatrix} \lambda - a_{11} & -a_{12} & ... & -a_{1n} \\ -a_{21} & \lambda - a_{22} & ... & -a_{2n} \\ ... & ... & ... & ... \\ -a_{n1} & -a_{n2} & ... & \lambda - a_{nn} \end{vmatrix} = 0 det(λIA)= λa11a21...an1a12λa22...an2............a1na2n...λann =0

关于特征向量,我们有一些常用的性质:

λ \lambda λ n n n阶方阵 A \bold{A} A的一个特征值,则有:

  1. λ k \lambda^k λk A k \bold{A}^k Ak的特征值,其中 k k k为正整数;
  2. λ \lambda λ A T \bold{A}^{T} AT的特征值;
  3. λ ≠ 0 \lambda \neq 0 λ=0,则 1 λ d e t ( A ) \frac{1}{\lambda}det(\bold{A}) λ1det(A) A \bold{A} A的伴随方阵 A ∗ \bold{A}^{*} A的特征值;
  4. 若方阵 A \bold{A} A为实方阵且满足 A A T = I \bold{AA^{T}} = \bold{I} AAT=I,则 ∣ λ ∣ = 1 |\lambda| = 1 λ=1

命题6.4.1
相似的矩阵具有相同的特征多项式和特征值。

命题6.4.2
A = ( a i j ) \bold{A} = (a_{ij}) A=(aij) C \bold{C} C上的一个 n n n阶方阵, λ 1 , . . . , λ n \lambda_1, ..., \lambda_n λ1,...,λn A \bold{A} A n n n个特征值,则有:

  1. t r ( A ) = ∑ i = 1 n λ i tr(\bold{A}) = \sum_{i=1}^{n} \lambda_{i} tr(A)=i=1nλi
  2. d e t ( A ) = Π i = 1 n λ i det(\bold{A}) = \Pi_{i=1}^{n} \lambda_{i} det(A)=Πi=1nλi

推论6.4.1
n n n阶方阵可逆当且仅当它的 n n n个特征值均不为零。

5. 相似对角化

引理6.5.1
A \bold{A} A是属于 F F F上的 n n n阶方阵,则属于 A \bold{A} A的不同特征值的特征向量是线性无关的。

定理6.5.1
数域 F F F上的 n n n阶方阵 A \bold{A} A相似于对角矩阵的充要条件是 A \bold{A} A n n n个线性无关的特征向量。

推论6.5.1
如果矩阵 A \bold{A} A n n n个特征值两两不同,则 A \bold{A} A相似于对角矩阵。

定理6.5.3
任何一个 n n n阶复方阵 A \bold{A} A都可以相似于一个上三角矩阵,且这个上三角矩阵的主对角线上的元素都是 A \bold{A} A的特征值。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
abaqus是一种常用于有限分析的软件,其具备强大的非线性分析功能。下面是一个abaqus非线性有限分析的示例代码。 首先,我们需要定义模型和材料属性。假设我们要分析一根弯曲的钢梁。 1. 创建模型: ``` ** 创建一个模型 myModel = mdb.Model(name='myModel', modelType=STANDARD_EXPLICIT) ** 创建一个部件 myPart = myModel.Part(name='myPart',dimensionality=THREE_D, type=DEFORMABLE_BODY) ``` 2. 定义材料属性: ``` ** 定义一个钢材料 myMaterial = myModel.Material(name='myMaterial') myMaterial.Elastic(table=((200e9, 0.3),)) ``` 3. 创建截面: ``` ** 创建横截面 mySection = myModel.HomogeneousSolidSection(name='mySection',material='myMaterial', thickness=0.1) ``` 4. 定义几何属性: ``` ** 创建一个钢梁的矩形截面 myPart.DatumProfile(name='mySectionProfile', shape=RECTANGLE, dimensions=(0.1, 0.1)) ** 创建一个钢梁的实体模型 myPart.BaseSolidExtrude(sketch=myPart.sketches['mySectionProfile'], depth=10.0) ``` 5. 单的划分: ``` ** 创建实体网格 myPart.PartitionCellByExtrudeEdge(line=myPart.edges[0, 0], cells=myPart.cells[:]) ``` 6. 加载条件和边界条件: ``` ** 创建固定边界条件 myModel.DisplacementBC(name='Fixed', createStepName='Step-1', region=myPart.sets['Set-fixed'], u1=0.0, u2=0.0, u3=0.0) ** 创建力加载条件 myModel.ConcentratedForce(name='Force', createStepName='Step-1', region=myPart.sets['Set-force'], cf1=1000.0, distributionType=UNIFORM) ** 定义时间步 myModel.StaticStep(name='Step-1') ``` 7. 进行非线性分析: ``` ** 运行分析 myModel.Job(name='Job-1',model='myModel',description='', type=ANALYSIS, atTime=None, waitMinutes=0,waitHours=0,queue=None, memory=90,numCpus=2, numGpus=0, priority=3, inputFormat=ABAQUS, inputCaching=None, explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, echoPrint=OFF, modelPrint=OFF, contactPrint=OFF, historyPrint=OFF) myModel.jobs['Job-1'].submit(consistencyChecking=OFF) myModel.jobs['Job-1'].waitForCompletion() ``` 以上是一个简单的abaqus非线性有限分析的示例代码。这个代码可以用于分析弯曲的钢梁,其中包含了模型的定义、材料属性的定义、截面的创建、几何属性的定义、单的划分、加载条件和边界条件的定义、时间步的设置以及非线性分析的运行。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值