6-16 Topological Sort(25 point(s))
Write a program to find the topological order in a digraph.
Format of functions:
bool TopSort( LGraph Graph, Vertex TopOrder[] );
where LGraph
is defined as the following:
typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode{
Vertex AdjV;
PtrToAdjVNode Next;
};
typedef struct Vnode{
PtrToAdjVNode FirstEdge;
} AdjList[MaxVertexNum];
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv;
int Ne;
AdjList G;
};
typedef PtrToGNode LGraph;
The topological order is supposed to be stored in TopOrder[]
where TopOrder[i]
is the i
-th vertex in the resulting sequence. The topological sort cannot be successful if there is a cycle in the graph -- in that case TopSort
must return false
; otherwise return true
.
Notice that the topological order might not be unique, but the judge's input guarantees the uniqueness of the result.
Sample program of judge:
#include <stdio.h>
#include <stdlib.h>
typedef enum {false, true} bool;
#define MaxVertexNum 10 /* maximum number of vertices */
typedef int Vertex; /* vertices are numbered from 0 to MaxVertexNum-1 */
typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode{
Vertex AdjV;
PtrToAdjVNode Next;
};
typedef struct Vnode{
PtrToAdjVNode FirstEdge;
} AdjList[MaxVertexNum];
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv;
int Ne;
AdjList G;
};
typedef PtrToGNode LGraph;
LGraph ReadG(); /* details omitted */
bool TopSort( LGraph Graph, Vertex TopOrder[] );
int main()
{
int i;
Vertex TopOrder[MaxVertexNum];
LGraph G = ReadG();
if ( TopSort(G, TopOrder)==true )
for ( i=0; i<G->Nv; i++ )
printf("%d ", TopOrder[i]);
else
printf("ERROR");
printf("\n");
return 0;
}
/* Your function will be put here */
Sample Input 1 (for the graph shown in the figure):
5 7
1 0
4 3
2 1
2 0
3 2
4 1
4 2
Sample Output 1:
4 3 2 1 0
Sample Input 2 (for the graph shown in the figure):
5 8
0 3
1 0
4 3
2 1
2 0
3 2
4 1
4 2
Sample Output 2:
ERROR 拓扑排序问题,具体讲解可以看点击打开链接 ,感觉讲的很清楚 代码:
bool TopSort( LGraph Graph, Vertex TopOrder[] ){ int indegree[MaxVertexNum];//用于保存每个点的入度 int q[MaxVertexNum];//队列,用于优化时间复杂度,每次找零度的点只需要从上次零度点相邻的里面找 int i; int num = 0;//记录拓扑排序数组下标 int head=0,tail=0; PtrToAdjVNode t; for(i = 0; i < Graph->Nv; i++){ indegree[i] = 0; } for(i = 0; i < Graph->Nv; i++){//遍历每一个点 t = Graph->G[i].FirstEdge; while(t){//遍历每一个点后面所连的点 indegree[t->AdjV]++; t = t->Next; } }//对入度进行初始化 for(i = 0; i < Graph->Nv; i++){ if(indegree[i]==0){ q[tail++] = i;//先找到入度为零的点,加入队列,然后对队列进行操作即可 } } if(head==tail)return false;//如果找了一圈没有入度为零的点,肯定不对,返回false //队列操作 while(head<tail){ t = Graph->G[q[head]].FirstEdge;//取出队首的元素 while(t){//对队首元素相邻的点进行遍历,操作 if(indegree[t->AdjV]<0)return false;//如果这个点入度为负数,说明之前肯定已经放在拓扑排序数组里了,再出现说明有环 indegree[t->AdjV]--;//相邻元素入度减一 if(indegree[t->AdjV]==0){ q[tail++] = t->AdjV;//减后为零入队 } t = t->Next; } indegree[q[head]] = -1;//表示这个点不能再出现了 TopOrder[num++] = q[head++]; } if(num!=Graph->Nv)return false; else return true; }