Traveling
AtCoDeer the deer is going on a trip in a two-dimensional plane. In his plan, he will depart from point (0,0) at time 0, then for each i between 1 and N (inclusive), he will visit point (xi,yi) at time ti.
If AtCoDeer is at point (x,y) at time t, he can be at one of the following points at time t+1: (x+1,y), (x−1,y), (x,y+1) and (x,y−1). Note that he cannot stay at his place. Determine whether he can carry out his plan.
- 1 ≤ N ≤ 105
- 0 ≤ xi ≤ 105
- 0 ≤ yi ≤ 105
- 1 ≤ ti ≤ 105
- ti < ti+1 (1 ≤ i ≤ N−1)
- All input values are integers.
Input is given from Standard Input in the following format:
N t1 x1 y1 t2 x2 y2 : tN xN yN
If AtCoDeer can carry out his plan, print Yes
; if he cannot, print No
.
2 3 1 2 6 1 1
Yes
For example, he can travel as follows: (0,0), (0,1), (1,1), (1,2), (1,1), (1,0), then (1,1).
1 2 100 100
No
It is impossible to be at (100,100) two seconds after being at (0,0).
2 5 1 1 100 1 1
No
前后相减,如果所用实际步数小于最短步数肯定不行
其次如果是等于肯定可以
如果大于,不是一定可以,必须其奇偶性相同,即如果最短步数是奇数步,那么如果多走几步最终回到那个点,所走步数也一定是奇数步
code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int MAXN = 100010;
struct node{
int x,y,t;
}plan[MAXN];
int main(){
int n;
int i;
scanf("%d",&n);
plan[0].t = 0;
plan[0].x = 0;
plan[0].y = 0;
for(i = 1; i <= n; i++){
scanf("%d%d%d",&plan[i].t,&plan[i].x,&plan[i].y);
}
for(i = 1; i <= n; i++){
int mint = abs(plan[i].x-plan[i-1].x)+abs(plan[i].y-plan[i-1].y);
int realt = plan[i].t-plan[i-1].t;
if(mint % 2 != realt % 2 || realt<mint)
break;
}
if(i > n)
printf("Yes\n");
else
printf("No\n");
return 0;
}