数学建模(九) 排队论

最后一part了,一位老师曾讲过,元胞自动机的交通模型要会改,排队论的并列式模型要非常理解以至于可以自己写出来!!!那么并列模型是什么呢,请继续看!!!
定义:通过对服务对象到来及服务时间的统计研究,得出这些数量指标(等待时间、排队长度、忙期长短等)的统计规律,然后根据这些规律来改进服务系统的结构或重新组织被服务对象,使得服务系统既能满足服务对象的需要,又能使机构的费用最经济或某些指标最优。
排队论中的符号表示:A/B/C/n
A 输入过程, B 服务时间, C 服务台数, n 系统容量。
如:M/M/S/无穷:输入过程是 Poisson 流;服务时间服从负指数分布;系统有 S 个服务台平行服务;系统容量为无穷大的等待制排队系统。

1.等待制模型:M/M/S/无穷,s=1

例:来访人员按照 Poisson 流到达,到达速率为 µ = 20 人/小时。接待人员的服务速率间服 λ = 9 人/小时的负指数分布。为使来访问者等待不超过半小时,最少应配置几名接待员?

lambda = 20; mu = 9; s = 3;
rho = lambda/(s*mu);
p0 = 1./( sum((s*rho).^k./factorial(k)) + ...
(s*rho)^s/(factorial(s)*(1-rho)) ); %factorial:阶乘
Ls = s*rho + (s*rho)^s*rho/(factorial(s)*(1-rho)^2)*p0;
Ws = Ls/lambda;
Wq = Ws - 1/mu

2.M/M/S/无穷,s=3

例:某售票处有3个窗口,顾客的到达为 Poisson 流 ,平均到达率为λ = 0.9人 / min;服务(售票)时间服从负指数分布,平均服务率 μ = 0.4人 / min。现设顾客到达后排成一个队列,依次向空闲的窗口购票,这一排队系统可看成是一个M/M/s /∞系统。
lingo求解:

model:
s=3;lamda=0.9;mu=0.4;
rho=lamda/mu;rho_s=rho/s;  !服务强度
P_wait=@peb(rho,s); !顾客等待概率
p0=6*(1-rho_s)/rho^3*P_wait; !服务台都空闲的概率
L_q=P_wait*rho_s/(1-rho_s); !平均等待队长;
L_s=L_q+rho; !平均队长
W_q=L_q/lamda; !平均等待时间
W_s=L_s/lamda; !平均逗留时间
end

Variable           Value
                                                           S        3.000000
                                                       LAMDA       0.9000000
                                                          MU       0.4000000
                                                         RHO        2.250000
                                                       RHO_S       0.7500000
                                                      P_WAIT       0.5677570
                                                          P0       0.7476636E-01
                                                         L_Q        1.703271
                                                         L_S        3.953271
                                                         W_Q        1.892523
                                                         W_S        4.392523

3.串并混合系统

先粘一张图:
在这里插入图片描述
实现起来需要把左半部分的离开时间作为右半部分的到达时间,左右分别是一个(其实左边是两个)并列式模型,具体的代码就不粘了。

4.损失制模型

这部分及下都简单写
M/M/S/S。当 s 个服务台被占用后,顾客自动离去。
例:设某条电话线,平均每分钟有 0.6 次呼唤,若每次通话时间平均为 1.25min,
求系统相应的参数指标。
s=1,lamda=0.6,mu=1/1.25。

model:
s=1;lamda=0.6;mu=1/1.25;rho=lamda/mu;
Plost=@pel(rho,s);  !Plost =@pel(rho,s)系统损失概率 43%
Q=1-Plost;
lamda_e=Q*lamda;A=Q*lamda_e;
L_s=lamda_e/mu;
eta=L_s/s; !服务概率 43%
end

5.混合制模型

M/M/S/K。系统容量为 K,当 K 个位置被占用时,顾客自动离开。
例:某修理站只有一个修理工,且站内最多只能停放 4 台待修的机器。设待修机
器按 Poisson 流到达修理站,平均每分钟到达 1 台;修理时间服从负指数分布,平均每1.25 分钟可修理 1 台,试求该系统的有关指标。
解:该系统可看成是一个 M / M /1/ 4 排队系统,其中lamda=1,mu=1/1.25,k=4
(这代码挺难看懂的,随缘吧)

model:
sets:
state/1..4/:p;
endsets
lamda=1;mu=1/1.25;rho=lamda/mu;k=4;
lamda*p0=mu*p(1);
(lamda+mu)*p(1)=lamda*p0+mu*p(2);
@for(state(i)|i #gt#1 #and# i #lt#
k:(lamda+mu)*p(i)=lamda*p(i-1)+mu*p(i+1));
lamda*p(k-1)=mu*p(k);
p0+@sum(state:p)=1;
P_lost=p(k);lamda_e=lamda*(1-P_lost);
L_s=@sum(state(i)|i #le#k:i*p(i));
L_q=L_s-(1-p0);
W_s=L_s/lamda_e;
W_q=W_s-1/mu;
end
  • 2
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值