数学建模(三) 预测与评价

预测和评价

预测和评价这一节的话范围比较大,可介绍的方法也比较多,边写边学吧。

评价模型

1.加权平均

在这里插入图片描述
例:cumcm2011B:
5.2问题二:
5.2.1对交巡警服务平台设置方案的合理性研究
(1)首先建立线性加权评价模型来分析评价该市交巡警服务平台设置方案的合理性。
根据第一问第一个子问题的模型,对六个区和全市可分别求出服务平台的覆盖率和平均每个服务平台工作强度的方差。确定两个评价指标,分别是各个区的服务平台覆盖率以及各个服务平台的工作强度。设各个区和全市的服务平台覆盖率为g,做归一化处理后的数据为gn ;各个区内服务平台工作强度的方差为s,方差的倒数1/s,做归一化处理后的数据为vn。那么综合评价指标h为
h=a*gn+(1-a)*vn
其中,a为权重系数,a属于0到1。

2.层次分析

这个方法由于很多教程都提到了,我就略仔细写一下。
首先是建立一个层次结构模型。
然后对属性值(下图准则层)生成一个判断矩阵A,Aij代表属性i相对于j的重要性,7就代表i比j重要非常非常多,1/7则相反。这个矩阵完全是自己定义的,感觉自己权力很大有没有,没有,因为要查文献的,不能乱给。
然后依次是层次单排序及一致性检验,层次多排序及一致性检验。
在这里插入图片描述
层次单排序:

disp('请输入判断矩阵A(n阶)');
A=input('A=');
[n,n]=size(A);
x=ones(n,100);
y=ones(n,100);
m=zeros(1,100);
m(1)=max(x(:,1));
y(:,1)=x(:,1);
x(:,2)=A*y(:,1);
m(2)=max(x(:,2));
y(:,2)=x(:,2)/m(2);
p=0.0001;i=2;k=abs(m(2)-m(1));
while  k>p
  i=i+1;
  x(:,i)=A*y(:,i-1);
  m(i)=max(x(:,i));
  y(:,i)=x(:,i)/m(i);
  k=abs(m(i)-m(i-1));
end
a=sum(y(:,i));
w=y(:,i)/a;
t=m(i);
disp(w);
         %以下是一致性检验
CI=(t-n)/(n-1);RI=[0
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值