[BZOJ2177][最小/最大(曼哈顿距离)生成树]曼哈顿最小生成树

标签: 最小-最大生成树
899人阅读 评论(0) 收藏 举报
分类:

题意


给定平面内一些点,求最小曼哈顿距离生成树


看这篇咯http://blog.csdn.net/acm_cxlove/article/details/8890003

#include <cstdio>
#include <string>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 100010
#define X first
#define Y second

using namespace std;

typedef long long ll;

int n,m,cnt,cnt0;
int B[N],C[N],D[N],fa[N];
ll Ans;
struct Point{
    int x,y,id;
}A[N];
struct edge{
    int u,v,w;
    edge(int u=0,int v=0):u(u),v(v){}
    friend bool operator <(edge a,edge b){
        return a.w<b.w;
    }
}E[N<<3];

inline bool cmpx(Point a,Point b){
    return a.x<b.x;
}

inline bool cmpy(Point a,Point b){
    return a.y<b.y;
}

inline bool back(Point a,Point b){
    return a.id<b.id;
}

inline void reaD(int &x){
    char c=getchar(); x=0; int f=1;
    for(;c>'9'||c<'0';c=getchar())if(c=='-') f=-1;
    for(;c>='0'&&c<='9';x=x*10+c-'0',c=getchar()); x*=f;
}

inline int query(int x){
    int Min=1<<30,r=-1;
    for(;x<=cnt;x+=x&-x)
        if(C[x]<Min) Min=C[x],r=D[x];
    return r;
}

inline void Add(int x,int y,int z){
    for(;x;x-=x&-x)
        if(y<C[x]) C[x]=y,D[x]=z;
}

int find(int x){
    return fa[x]==x?x:fa[x]=find(fa[x]);
}

int main(){
    reaD(n);
    for(int i=1;i<=n;i++)
        reaD(A[i].x),reaD(A[i].y),A[i].id=i;
    for(int i=1;i<=n;i++) B[i]=A[i].y-A[i].x;
    //1
    sort(A+1,A+1+n,cmpx);
    sort(B+1,B+1+n); cnt=unique(B+1,B+1+n)-B-1;
    memset(C,0x7f,sizeof(C)); memset(D,-1,sizeof(D));
    for(int i=n;i;i--){
        int x=lower_bound(B+1,B+1+cnt,A[i].y-A[i].x)-B,pos=query(x);
        if(pos>0) E[++cnt0]=edge(A[i].id,pos);
        Add(x,A[i].x+A[i].y,A[i].id);
    }
    //4
    memset(C,0x7f,sizeof(C)); memset(D,-1,sizeof(D));
    for(int i=1;i<=n;i++) B[i]=-A[i].x-A[i].y;
    sort(B+1,B+1+n); cnt=unique(B+1,B+1+n)-B-1;
    for(int i=n;i;i--){
        int x=lower_bound(B+1,B+1+cnt,-A[i].x-A[i].y)-B,pos=query(x);
        if(pos>0) E[++cnt0]=edge(A[i].id,pos);
        Add(x,A[i].x-A[i].y,A[i].id);
    }
    //2
    sort(A+1,A+1+n,cmpy);
    memset(C,0x7f,sizeof(C)); memset(D,-1,sizeof(D));
    for(int i=1;i<=n;i++) B[i]=A[i].x-A[i].y;
    sort(B+1,B+1+n); cnt=unique(B+1,B+1+n)-B-1;
    for(int i=n;i;i--){
        int x=lower_bound(B+1,B+1+cnt,A[i].x-A[i].y)-B,pos=query(x);
        if(pos>0) E[++cnt0]=edge(A[i].id,pos);
        Add(x,A[i].x+A[i].y,A[i].id);
    }
    //3
    memset(C,0x7f,sizeof(C)); memset(D,-1,sizeof(D));
    for(int i=1;i<=n;i++) B[i]=A[i].y+A[i].x;
    sort(B+1,B+1+n); cnt=unique(B+1,B+1+n)-B-1;
    for(int i=1;i<=n;i++){
        //printf("%d\n",i);
        int x=lower_bound(B+1,B+1+cnt,A[i].y+A[i].x)-B,pos=query(x);
        if(pos>0) E[++cnt0]=edge(A[i].id,pos);
        Add(x,A[i].x-A[i].y,A[i].id);
    }
    //mst
    sort(A+1,A+1+n,back);
    for(int i=1;i<=cnt0;i++)
        E[i].w=abs(A[E[i].u].x-A[E[i].v].x)+abs(A[E[i].u].y-A[E[i].v].y);
    sort(E+1,E+1+cnt0);
    //for(int i=1;i<=cnt0;i++) printf("%d %d %d\n",E[i].u,E[i].v,E[i].w);
    for(int i=1;i<=n;i++) fa[i]=i;
    for(int i=1;i<=cnt0;i++){
        if(find(E[i].u)==find(E[i].v)) continue;
        fa[find(E[i].u)]=find(E[i].v);
        Ans+=E[i].w;
    }
    cout<<Ans<<endl;
    return 0;
}

另外还有求最大曼哈顿距离生成树,好像有个叫Boruvka的算法
就是每次找到图中独立的一个团,找到一条最长的一个端点在这个团中另一个端点属于另一个团的边,把这两个端点属于的团合并,记录答案。

#include <cstdio>
#include <cstring>
#include <string>
#include <iostream>
#include <algorithm>
#include <vector>
#include <set>
#define N 100010
#define X first
#define Y second

using namespace std;

typedef long long ll;
typedef pair<int,int> paris;
typedef pair<ll,paris> parpar;
typedef set<paris>::iterator itr;

int n;
int fa[N],vis[N];
int val[N][4];
paris p[N];
ll Ans;
set<paris> S[4];
vector<parpar> A;
vector<int> V[N];

int dx[4]={1,1,-1,-1},dy[4]={1,-1,-1,1};

inline void reaD(int &x){
    char c=getchar();x=0; int f=1;
    for(;c>'9'||c<'0';c=getchar())if(c=='-')f=-1;
    for(;c>='0'&&c<='9';x=x*10+c-'0',c=getchar()); x*=f;
}

int find(int x){ return fa[x]==x?x:fa[x]=find(fa[x]); }

inline bool iUnion(int x,int y){
    x=find(x); y=find(y);
    if(x==y) return 0;
    if(V[x].size()>V[y].size()) swap(x,y);
    for(int i=0;i<V[x].size();i++)
        V[y].push_back(V[x][i]);
    V[x].clear();
    fa[x]=y;
    return 123;
}

int main(){
    freopen("mst.in","r",stdin);
    freopen("mst.out","w",stdout);
    reaD(n);
    for(int i=1;i<=n;i++)
        reaD(p[i].X),reaD(p[i].Y);
    for(int i=1;i<=n;i++){
        fa[i]=i,V[i].push_back(i);
        for(int j=0;j<4;j++){
            val[i][j]=p[i].X*dx[j]+p[i].Y*dy[j];
            S[j].insert(paris(val[i][j],i));
        }
    }
    int linked=0;
    while(!linked){
        memset(vis,0,sizeof(vis));
        for(int i=1;i<=n;i++){
            int x=find(i);
            if(vis[x]) continue;
            if(V[x].size()==n){ linked=1; break; }
            vis[x]=1;
            for(int j=0;j<V[x].size();j++){
                int u=V[x][j];
                for(int k=0;k<4;k++)
                    S[k].erase(paris(val[u][k],u));
            }
            int v; ll Max=-1;
            for(int j=0;j<V[x].size();j++){
                int u=V[x][j];
                for(int k=0;k<4;k++){
                    itr it=S[(k+2)%4].end(); it--;
                    if(1ll*it->X+val[u][k]>Max) Max=1ll*it->X+val[u][k],v=it->Y;
                }
            }
            A.push_back(parpar(Max,paris(x,v)));
            for(int j=0;j<V[x].size();j++){
                int u=V[x][j];
                for(int k=0;k<4;k++)
                    S[k].insert(paris(val[u][k],u));
            }
        }
        for(int i=0;i<A.size();i++){
            int u=A[i].Y.X,v=A[i].Y.Y; ll w=A[i].X;
            if(iUnion(u,v)) Ans+=w;
        }
    }
    cout<<Ans<<endl;
    return 0;
}
查看评论

曼哈顿距离最小生成树与莫队算法

一、曼哈顿距离最小生成树 曼哈顿距离最小生成树问题可以简述如下: 给定二维平面上的N个点,在两点之间连边的代价为其曼哈顿距离,求使所有点连通的最小代价。 朴素的算法可以用O(N2)的Prim,或...
  • huzecong
  • huzecong
  • 2013-02-08 15:46:06
  • 10895

关于曼哈顿距离下的最小生成树

这些天一直在集训,考了十几次…… zzy出了一道曼哈顿距离下的最小生成树,考场上我没做出来…… 嗯……这种题目的问题在于,你没办法把每两个点都建一条边…… 但是因为是曼哈顿距离,所以有一些特殊性...
  • OrpineX
  • OrpineX
  • 2012-03-21 14:49:00
  • 3914

POJ 3241 Object Clustering 二维平面曼哈顿距离最小生成树

题目链接:点击打开链接 题意: 给定二维平面上的n个点坐标,常数k 下面n行给出坐标 求一个最小生成树,问第k大的边是多少。 任意两个点间建一条边的花费是其曼哈顿距离。 思路:转自:点击打...
  • qq574857122
  • qq574857122
  • 2015-05-14 18:32:11
  • 1133

曼哈顿距离最小生成树

转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 二维平面中有一些点,两点之间的距离为曼哈顿距...
  • ACM_cxlove
  • ACM_cxlove
  • 2013-05-06 13:22:22
  • 10686

BZOJ 2177 [曼哈顿最小生成树]

DescriptionDescription 平面坐标系xOyxOy内,给定nn个顶点V=(x,y)V = (x , y)。对于顶点u,v,uu,v,u与vv之间的距离dd定义为|xu–xv|+|...
  • Vectorxj
  • Vectorxj
  • 2017-03-17 19:32:25
  • 428

BZOJ 2177 最小曼哈顿生成树

留板。 #include using namespace std; typedef pair pii; const int maxn=100005; const long long inf=0x3...
  • u013944294
  • u013944294
  • 2017-10-02 16:42:09
  • 110

[树上依赖多重背包 DP] BZOJ 4910 [Sdoi2017]苹果树

题目 t−h≤kt-h\le k 的限制其实就是选一条到叶节点的链,然后再选k个的最大值(因为vi都大于零)。因为 ai>1ai>1 的点,肯定是先选了第一个才会选第二个 所以可以把 ai>1ai>...
  • Coldef
  • Coldef
  • 2017-09-02 09:01:24
  • 542

A*寻路算法(曼哈顿距离)

前一些天,在群有人问到A*算法的问题。之前我已经有实现过,并将之放到github上(https://github.com/XJM2013/A_Star);有兴趣的可以下载下来看看。 这里上传了一个相当...
  • a374826954
  • a374826954
  • 2015-06-08 00:00:15
  • 6780

[Boruvka算法 曼哈顿距离最大生成树] 省选模拟赛 4 C. 树树树 mst

题目大意 求曼哈顿距离最大生成树 n≤100000n\leq 100000Boruvka算法是什么呢 也就是说 我们只要每次求一个连通块连出去的最远的边 把这些边都加入 只要这样 O(logn)O...
  • u014609452
  • u014609452
  • 2017-03-18 20:49:12
  • 1092

A*寻路 曼哈顿启发式算法 初探 经典寻路算法

作者: Patrick Lester 译者:Panic 2005年3月18日 译者序:很久以前就知道了A*算法,但是从未认真读过相关的文章,也没有看过代码,只是脑子里有个模糊的概念。这次决定从头开...
  • linjiayun
  • linjiayun
  • 2013-12-17 18:36:27
  • 2026
    个人资料
    持之以恒
    等级:
    访问量: 10万+
    积分: 5255
    排名: 6493
    文章分类
    最新评论