A unique AI-based tool for automated segmentation of pulp cavity structures in maxillary premolars on CBCT
一种独特的基于 AI 的工具,用于在 CBCT 上自动分割上颌前磨牙的髓腔结构
摘要
开发和验证一种人工智能 (AI) 驱动的工具,用于在锥形束计算机断层扫描 (CBCT) 上自动分割上颌前磨牙的牙髓腔结构。将 111 个 CBCT 扫描分为训练 (n = 55)、验证 (n = 14) 和测试 (n = 42) 组,手动分割作为基本事实。AI 工具自动分割测试数据集,由作员纠正错误以创建精细的 3D (R-AI) 模型。通过比较 AI 和 R-AI 模型来评估整体 AI 性能,并手动分割 30% 的测试样本以比较 AI 和人类的性能。每种方法的时间效率以秒 (s) 为单位记录。统计分析包括独立和配对 t 检验,以评估牙齿类型对准确性指标和 AI 与手动分割的影响。使用 Tukey 事后检验的单因素方差分析进行时间效率分析。所有分析均使用 5% 的显著性水平。AI 工具表现出出色的性能,骰子相似系数 (DSC) 范围为 88% ± 7% 至 93% ± 3,95% 的豪斯多夫距离 (HD) 范围为 0.13 ± 0.06 至 0.16 ± 0.06 mm。上颌第二前磨牙的自动分割在交合比 (p = 0.005)、DSC (p = 0.008)、召回率 (p = 0.008)、精度 (p = 0.02) 和 95% HD (p = 0.04) 方面的表现略好于上颌第一前磨牙。与手动分割 (p < 0.001) 相比,基于 AI 的方法显示出更高的召回率 (p = 0.04)、准确性 (p = 0.01) 和更低的 95% HD。AI 分割 (42.8 ± 8.4 s) 比手动分割 (3218.7 ± 692.2 s) 快 75 倍 (p < 0.001)。事实证明,该 AI 工具非常准确且省时,超越了人类专家的性能。
介绍
牙科数字化工作流程的集成彻底改变了日常临床实践,增强了患者体验1,2,3.数字牙科的主要进步涉及技术,包括口内扫描仪 (IOS)、锥形束计算机断层扫描 (CBCT)、三维 (3D) 印模、增强现实和动态导航系统1,4,5.在牙髓病学中,采用数字工作流程使诊断更加可靠,制定合适的治疗计划,显著缩短了工作时间,并提高了牙髓治疗结果的可预测性2,3,6.
在数字工作流程的步骤中,CBCT 扫描中牙颌面硬组织结构的描绘(即分割)被认为是生成感兴趣结构的高精度 3D 模型的关键因素。传统上,分割方法包括半自动或全自动方法,用于根据 CBCT 扫描中体素的灰度值确定研究对象的正确阈值7、8、9.然而,分割过程被认为依赖于作员和 CBCT 设备,通常需要额外的手动校正,这需要大量的临床时间并且受人为主观的影响7、8、9.
计算工程的技术进步促进了基于卷积神经网络 (CNN) 模型的人工智能 (AI) 驱动工具的开发,以克服传统分割方法固有的局限性,从而简化数字工作流程1、10、11.CNN 作为一种基于人工神经网络的特殊 AI 算法,在自动分割数字图像方面显示出相当大的前景12.以前的研究报告了高精度和省时的 CNN 模型在各种解剖和非解剖结构(包括牙齿)的自动分割中的有效应用10、13、14、15 元、 种植牙16、 牙槽骨11、 下颌管17,18 元、 上颌窦19、 咽气道间隙20和 下颌骨切开管21、CBCT 扫描。
在这种情况下,新颖的人工智能驱动工具为自动分割牙髓腔结构(即牙髓腔和根管)提供了一种有价值的替代方案,从而显着影响临床程序和牙髓治疗结果。这些工具对于在 CBCT 扫描中准确识别根管系统的形态特别有价值,包括解剖学上复杂的区域,如根尖三角、狭窄管和峡部22.此外,这些工具可以通过为学生提供更有效的根管治疗来加强临床前培训。此外,它们还可以协助分析大型数据集,以研究不同人群的根管解剖结构,从而更全面地了解牙髓解剖学的复杂性7、23、24.上颌前磨牙在准备、清洁和充填过程中存在相当大的解剖挑战,因为它们的根管系统具有挑战性,通常包括根尖直径减小和根弯曲度25,26 元.通常,这些牙齿有两个牙根,通常有多个根管、峡部和副管27.椎管形态随年龄增长而变化,老年患者钙化加剧。此外,男性通常多根管的患病率更高,突出了与性别相关的形态差异27.上颌第一和第二前磨牙靠近上颌窦等重要的解剖结构,进一步增加了复杂性25.
在上颌前磨牙中生成牙髓室和根管的高精度 3D 模型可能是牙髓治疗中的一种非常有效的策略,尤其是对于引导入路,因为它可以确保牙髓腔结构的精确定位,最大限度地减少不必要地去除坚硬的牙组织,并优化治疗结果。此外,这些 3D 模型对于教育培训非常有价值,可以帮助学生更好地理解复杂的解剖结构,并通过让患者更清楚地可视化和理解建议的治疗计划来增强牙医与患者的沟通。尽管准确分割在数字牙髓工作流程中很重要,但仍然严重缺乏经过临床验证的自动化这一过程的工具,尤其是在上颌前磨牙中。为了解决这一差距,我们的研究重点是开发和验证一种人工智能驱动的工具,该工具专门用于提高牙髓病实践的可靠性和效率。
这项调查的主要目的是开发和验证一种基于 AI 的新型工具,用于在 CBCT 扫描中自动分割上颌前磨牙的牙髓腔和根管。该研究的假设表明,这种新颖的人工智能驱动工具将为上颌前磨牙提供牙髓腔分割,其性能在准确性和时间效率方面低于人类专家。
材料和方法
道德方面
鲁汶大学医院的研究伦理委员会在调查开始前批准了这项调查(方案编号:S67798)。目前的研究遵循 ICH-GCP 原则和赫尔辛基世界医学协会关于医学研究的宣言。考虑到在进行任何分析之前对患者数据进行匿名化处理,不需要知情同意。
数据
回顾性地,从比利时鲁汶 UZ 鲁汶大学医院的牙颌面成像中心数据库中检索到一组 111 例 CBCT 扫描。这些扫描是出于与当前调查无关的不同目的而获得的,例如牙髓治疗计划、种植体计划以及口腔颌面外科手术。数据集是使用两种 CBCT 设备获取的:3D Accuitomo 170(J Morita,日本京都)和 NewTom VGi evo(Cefla,伊莫拉,意大利)。需要强调的是,采用异构采集参数来获得 CBCT 扫描:对于 3D Accuitomo,90 kV 电压峰值 (kVp)、5 毫安 (mA),视场 (FOV) 为 8 × 8、10 × 10、14 × 10 和 17 × 12 厘米,体素大小范围为 0.125 至 0.250 毫米。对于 NewTom VGi EVO,参数包括 110 kVp、3 – 20 mA、8 × 8、10 × 10、12 × 8、16 × 16 和 24 × 19 cm,体素尺寸范围为 0.125 至 0.300 mm。图 1 总结了当前研究设计的概念框架。
用于开发和验证用于上颌前磨牙自动分割的 AI 驱动工具的研究设计的概念框架。
对于成像数据集的选择,纳入标准包括来自恒牙完全和令人满意图像质量的患者的 CBCT 扫描,其特征是中等水平的清晰度和对比度以及低噪声水平。这种方法确保了上颌前磨牙牙髓室和根管的准确描绘。包括 FOV 单独覆盖上颌骨或同时覆盖上颌骨和下颌骨的 CBCT 扫描。尽管一些扫描捕获了两个牙弓,但分析仅集中在上颌前磨牙上。包括具有不同 FOV 的扫描,旨在增强研究结果的普遍性。图像质量差的扫描,例如受光束硬化或移动造成的严重伪影影响的扫描,被排除在外。
选定的 CBCT 扫描以医学数字成像和通信 (DICOM) 格式导出,并随机分配到 CNN 模型的三个步骤中:
i) CNN 训练(n = 55,96 颗牙齿):使用作员进行的手动分割作为基本实况来训练 AI 模型。
ii) CNN 验证(n = 14,16 颗牙齿):通过优化参数对 AI 模型进行内部验证,直到建立理想的架构。
iii) CNN 测试(n = 42,70 颗牙齿):通过将完全由 AI 生成的 3D 模型与专家执行的精细自动分割 (R-AI) 获得的模型进行比较,对 AI 模型进行性能评估。
DICOM 文件被导入到名为“Virtual Patient Creator”(Relu,比利时鲁汶)的基于云的在线平台中。该交互式平台提供了一组编辑工具(例如,画笔、轮廓和插值工具),用于在 CBCT 扫描中手动分割牙颌面解剖结构。利用这些工具,可以精确描绘 CBCT 扫描多平面重建中显示的上颌前磨牙牙髓室和根管的界限。
在 CNN 模型的训练和验证数据集中,上颌前磨牙的每个牙髓腔和根管都由两个作员 (F.S.N. 和 S.A.) 进行手动分割。在对地面实况样本执行手动分割之前,所有作员都使用研究数据集中未包含的不同 CBCT 扫描进行了培训和校准。该校准涉及由两名作员 (FSN 和 S.A.) 在两个不同的时间点在单独的 CBCT 扫描上手动分割 10 颗上颌前磨牙。使用两个指标比较分割结果以评估审查员内部协议(同一作员在不同时间)和作员间协议(两个作员之间):交集与并集 (IoU) 和 95% 豪斯多夫距离 (HD)。如果 IoU 和 95% HD 分别至少为 80% 和 0.20 mm,则认为作员已校准。一位具有 8 年经验的口腔放射科医生 (R.C.F.) 在 CNN 模型开发之前审查了所有手动分割,并在必要时进行了调整。最终的分割图以标准三角形语言 (STL) 格式导出,然后用作训练 CNN 模型的输入。
CNN 网络架构
本研究开发的 CNN 模型是基于两个基于 3D U-Net 架构的序列神经网络构建的。每个网络由 4 个 Contract 编码器模块和 3 个 Explots 解码器模块组成。这些块包括两个具有标准核大小(3 × 3 × 3)的卷积,然后是修正线性单元 (ReLU) 激活和具有 8 个特征图的组归一化。采用两步法的决定源于将 CNN 应用于大 FOV 的 CBCT 扫描时遇到的挑战10,11 元.
第一个神经网络检测到近似的牙髓腔和根管,生成初始分割模型。随后,第二个神经网络对初始分割进行了改进,从而能够以全分辨率自动分割感兴趣的结构。CNN 模型是在 PyTorch 中实现的,并在训练数据集中使用数据增强策略提高了 AI 算法的稳健性。这些策略包括弹性变形、旋转、缩放、裁剪和镜像。
此外,CNN 模型使用 ADAM 优化算法进行了优化。这个过程包括降低学习率和根据验证集实施早期停止,以防止过拟合并确保 CNN 模型的有效性能。随后,最终确定的 CNN 模型得以实现,并可在名为“Virtual Patient Creator”的基于云的在线 AI 平台上访问。
CNN 模型测试
使用上述在线平台对上颌前磨牙的牙髓腔和根管进行自动分割。每个 DICOM 格式的 CBCT 扫描都上传到平台,然后该平台会自动分割每个上颌前磨牙的牙髓腔结构,生成 STL 格式的单个 3D 模型。此外,该平台还自动记录了生成细分图所需的时间(以秒为单位)。
一位具有 8 年经验的经验丰富的口腔放射科医生 (R.C.F.) 评估了测试集的自动分割,以检测和纠正 AI 生成的 3D 模型中的任何错误,包括过度分割或分割不足。在评估了每个自动分割后,作员确定所有分割图都需要某种形式的细微校正。
为了进行这项评估,采用了“Virtual Patient Creator”平台中的可重新切片轴工具。通过激活此工具,所有 CBCT 多平面重建(轴向、矢状面和冠状面)都对齐为平行于每个根管的长轴。画笔工具用于在分割图中添加或删除体素,使用 CBCT 重建上显示的牙髓腔结构的解剖轮廓作为参考。最后,以 STL 格式获得了每个上颌前磨牙牙髓腔结构的新 R-AI 分割图。数字秒表用于记录手动优化所花费的时间。
验证指标
应用体素级混淆矩阵来评估开发的 AI 工具的性能。对 AI 和 R-AI 3D 模型进行了比较,并得出了四个变量:
(一)
误报 (FP):体素最初被 CNN 模型识别为牙髓腔结构的一部分,但随后在优化 AI 分割期间作员删除。
(二)
假阴性 (FN):体素最初未被 CNN 模型识别为牙髓腔结构的一部分,但后来在优化 AI 分割期间作员包含。
(三)
真阳性 (TP):表示在自动分割过程中准确分割的实际髓腔结构的体素。
(四)
真阴性 (TN):体素与牙髓腔结构无关,并被正确排除在自动分割之外。
根据上述变量值,使用以下准确率指标评估所开发的 CNN 模型的性能:IoU、Dice 相似系数 (DSC)、召回率、精度、准确率和 95% HD(表 1)。
人工细分和 AI 驱动细分之间的比较
基于 AI 的自动分割性能的评估涉及与人工执行的手动分割(即手动分割)的比较。随机选择 21 颗牙齿,占测试样本的 30%,包括上颌第一和第二前磨牙。一位具有 CBCT 图像分析 (A.O.S.J.) 经验的经验丰富的牙髓病医生使用上述 AI 平台手动执行了牙髓腔结构的分割。作员使用轮廓工具根据 CBCT 扫描的轴向重建,手动勾勒出每颗牙齿的牙髓腔和根管边界。
随后,使用可重切片轴工具将每个 CBCT 扫描平行于每个根管的长轴对齐。这允许作员在导航 CBCT 扫描的矢状面和冠状面重建时添加或删除体素,从而有助于为每颗牙齿建立理想的 3D 模型。此任务执行了两次,间隔为 30 天,以评估手动分割的准确性。比较从每个案例的初始和后续分割会话中获得的 STL 文件,以计算前面描述的准确性指标。最后,将这些手动分割结果与 CNN 模型针对每个准确性指标从自动分割中获得的结果进行了比较。使用数字秒表记录手动分割每颗上颌前磨牙牙髓腔和根管所需的时间。
时间效率分析
对分割上颌前磨牙髓腔结构所需的时间进行了比较,以研究不同的方法:手动、AI 和 R-AI 方法。该分析使用了相同的样本 (n = 21) 来评估手动和 AI 驱动的分割的准确性:
i) 手动分割:作员对牙髓腔结构进行手动分割所需的时间包括从将 DICOM 数据导入 AI 平台到获得分割图的时间。
ii) AI 分割:在线平台记录了自动分割牙髓腔结构直到获得 3D 模型所花费的时间。
iii) R-AI 分割:记录作员执行的手动细化的持续时间,并与 AI 方法所花费的时间相结合。
统计分析
使用 SPSS 统计软件 (版本 24.0, IBM Corp., Armonk, NY) 进行数据分析。描述性数据分析涉及用平均值和标准差 (SD) 值总结结果,以进行准确性和时间效率评估。
通过 Shapiro-Wilk 检验验证数据的正态分布。为了比较上颌第一前磨牙和第二前磨牙之间的平均准确度指标值,使用了独立的 t 检验。同样,为了比较 AI 驱动和手动方法之间的性能,应用了配对 t 检验。最后,使用 Tukey 事后检验进行单因素方差分析 (ANOVA),以比较所研究的分割方法之间牙髓腔结构分割所需的时间。所有分析均采用 5% 的显著性水平。
使用 GPower 统计软件(版本 3.1.9.2,GPower,杜塞尔多夫,德国),对研究中执行的所有统计测试进行事后功效分析,如下所示:对于独立 t 检验,分析考虑了组均值、SD 和每组样本量之间的差异。对于配对 t 检验,考虑了配对观测值之间的平均差值、它们的 SD 和每个准确性指标的样本量。对于方差分析,功效分析考虑了组间的最小差异、组内 SD 和每组的观测值数。基于这些参数,实现的统计功效范围为 70% 至 99%。
结果
表 2 显示了 AI 驱动的分割的性能,显示了每个上颌前磨牙组(即第一和第二上颌前磨牙)的准确性指标。无论上颌前磨牙的类型和准确性指标如何,基于 AI 的自动分割都显示出优异的性能,具有高 IoU(范围从 80% ± 10% 到 86% ± 5)、DSC(范围从 88% ± 7% 到 93% ± 3)、召回率(范围从 90% ± 8% 到 95% ± 3)、精度(87% ± 7 到 90% ± 4)和准确性(99% ± 0.6% 到 99% ± 1.0)。此外,观察到 95% HD 的低值(范围从 0.13 ± 0.06 毫米到 0.16 ± 0.06 毫米),证实了 AI 和 R-AI 3D 模型之间的相似性。这表明自动分割需要进行较小程度的改进(图 2).
关于上颌前磨牙组的影响,上颌第一前磨牙(14 号和 24 号牙齿)在 IoU (p = 0.005)、DSC (p = 0.008)、召回率 (p = 0.02) 和 95% HD (p < 0.001) 方面表现出较差的性能。上颌第一前磨牙的 IoU (80% ± 10)、DSC (88% ± 7)、召回率 (90% ± 8) 和精确率 (87% ± 7) 的值低于上颌第二前磨牙,上颌第二前磨牙的 IoU (86% ± 5)、DSC (93% ± 3) 、召回率 (95% ± 3) 和精确度 (90% ± 4) 的值更高。此外,与上颌第二前磨牙 (0.13 ± 0.06 mm) 相比,上颌第一前磨牙表现出更高的 95% Hausdorff 距离 (HD) 值 (0.16 ± 0.06 mm)。就准确性指标而言,在牙齿组之间没有观察到统计学上的显着差异 (p = 0.87)。通过基于 AI 的方法获得的 3D 模型中发现的误差类型的图示如图 1 所示。3.
表 3 显示了比较手动和 AI 分割方法之间准确性指标的结果。与手动方法相比,AI 方法表现出更高的召回率 (91% ± 7,p = 0.04)、准确性 (99% ± 1,p = 0.01) 和较低的 95% HD (0.14 ± 0.05 mm,p < 0.001) (图 .4).然而,在 IoU (p = 0.06)、DSC (p = 0.09) 和精度 (p = 0.33) 指标方面,测试的分割方法之间没有观察到统计学上的显著差异。
基于使用上颌第一右前磨牙颜色映射的 STL 比较的手动 (A) 和 AI (B) 分割方法之间的比较。以红色和黄色突出显示的区域表示手动方法的第一次和第二次手动分割之间以及 AI 方法的 AI 和 R-AI 3D 模型之间的显著差异。
图 5 描述了手动、AI 和 R-AI 分割方法所需的时间。AI 驱动的分割 (42.8 ± 8.4 s) 和 R-AI (161.8 ± 67.2 s) 所花费的时间显示出相似的工作时间 (p = 0.95),均明显短于手动方法 (3218.7 ± 692.2 s),后者被证明是最耗时的方法 (p < 0.001)。
Comparison of STL files between AI and R-AI models for all types of maxillary premolars teeth groups (teeth 14, 15, 24, and 25) using color mapping in frontal and lateral views. Red and yellow areas indicate significant differences, highlighting discrepancies between the AI and R-AI 3D models.
Three-dimensional models generated by AI illustrating errors in the automatic segmentation method. White areas (before refinements) are indicated by arrows alongside red areas (after refinements) in the root canal segmentation maps. A, Undersegmentation in the pulp chamber and root canal of the maxillary first right premolar tooth; B, Oversegmentation in the root canal of the maxillary first left premolar tooth; C, Both under- and oversegmentation in the pulp chamber and apical third of the maxillary second left premolar tooth.
Time-efficiency analysis based on segmentation method. Different uppercase letters indicate statistically significant differences among segmentation methods (p < .05). Statistical power analysis of 0.99. AI, Artificial Intelligence; R-AI, Refined Artificial Intelligence.
讨论
牙髓腔结构的准确分割是牙髓病学数字工作流程中的关键组成部分7、23、24、28.获得上颌前磨牙牙髓腔和根管的精确 3D 模型可以显着提高临床医生的诊断效率,从而提高牙髓治疗结果的成功率。然而,文献强调了使用基于阈值的方法(例如半自动或全自动方法)进行 3D 图像分割的明显局限性10、11、13 元.因此,本研究开发并验证了一种基于 AI 的工具,用于在 CBCT 扫描上自动分割上颌前磨牙的牙髓腔结构。开发的 CNN 模型表现出出色的性能,以省时的方式生成这些精细牙髓结构的高精度 3D 模型,超越了基于手动分割的人类性能。
这项研究的创新和有希望的成果可以归因于开发的人工智能算法的持续课程学习29.最初,基于 AI 的工具被训练用于自动分割不太复杂的根管(即具有单根管的牙齿)。渐渐地,CNN 模型不断优化,直到它能够提供上颌前磨牙根管的充分分割,这项任务被认为要复杂得多。因此,目前的研究结果表明,开发的 AI 工具能够对上颌前磨牙的牙髓腔结构提供高度准确的自动分割 (IoU:范围从 80% ± 10% 到 86% ± 5;DSC:范围从 88% ± 7% 到 93% ± 3;和 95% HD:范围从 0.13 ± 0.06 毫米到 0.16 ± 0.06 毫米)。
基于这些发现,可以想象,本研究中开发的 CNN 模型可以成为临床实践中自动分割上颌第一和第二前磨牙牙髓室和根管的有效工具,标志着牙髓病学数字工作流程的一场革命。CBCT 扫描中牙髓结构的分割一直是数字工作流程中的挑战7、23、24、28.之前的一项研究建议使用两个 3D U-Net 网络来自动分割单根前磨牙的牙髓腔和根管7.尽管报告了可接受的性能(DSC = 87.49%,95% HD = 1.99 mm),但作者采用从显微计算机断层扫描数据获得的 3D 模型作为评估 AI 工具性能的基本事实,限制了结果的普遍性。此外,所提出的 CNN 模型难以提供单根前磨牙根管根尖三分之一的准确自动分割。其他研究评估了基于 AI 的自动牙齿分割工具的性能13、 单根牙齿及其根管23、单根和多根牙齿的牙齿和牙髓腔28以及下磨牙及其牙髓腔30在 CBCT 扫描中。然而,上述这些研究都没有集中在开发和验证准确、快速的 CNN 模型,用于在 CBCT 扫描中自动分割上颌前磨牙的牙髓腔和根管。因此,将当前研究结果与以前的研究结果直接进行比较是不可行的。
总体而言,本研究的准确性指标表明,与第一前磨牙相比,基于 AI 的上颌第二前磨牙自动分割的性能略好。然而,重要的是要强调这种统计差异相对较低,主要是由于实现的 SD 值较低,并且可能对在临床场景中开发的 CNN 模型的性能没有显着影响。这些结果可以用上颌第一前磨牙的解剖复杂性来解释,例如大多数根尖孔与根尖不重合,以及根尖三角管的显着发生率25,31 元.此外,这组牙齿通常在牙根的外表面存在解剖学挑战,包括颊根的腭表面存在明显的凹陷,这在牙髓手术中可能具有重要的临床意义25.因此,所有这些因素都可能导致在上颌第一前磨牙的 AI 驱动牙髓腔结构分割中观察到的性能较低。
鉴于根管系统的解剖复杂性,对根管形态的透彻理解在数字牙髓学中至关重要,尤其是对于这种变化很常见的上颌前磨牙票价:25、26、27、31 元.CBCT 扫描的出现通过提供超越传统方法的详细 3D 成像,显著提高了诊断准确性26,32 元.将 CBCT 扫描整合到具有挑战性的临床病例的管理中,不仅可以增强临床医生的信心,还可以提高牙髓治疗的成功率32.该技术允许精确导航复杂的根管,从而改善患者的治疗效果26.通过提供解剖复杂性的全面视图,CBCT 扫描支持仔细选择器械技术并优化充填过程,这两者都对于获得良好的牙髓治疗结果至关重要32.
由人工执行的手动分割被用作参考,以评估本研究中开发的 AI 工具提供的自动分割的结果。值得注意的是,人工智能的表现优于人类智能,类似于图灵测试的重考,在图灵测试中,机器被比作人类来执行特定任务33,34 元.这种优势通过高召回值 (91% ± 7)、准确性 (99% ± 1) 和低 95% HD 值 (0.14 ± 0.05 mm) 中显而易见。出现这种表现可能是因为人类决策本质上很复杂,并且可能会因经验水平和情绪状态等因素而有所不同34.这些人为因素可能会导致不一致,即使在熟练的专业人员之间也是如此,而 AI 驱动的工具可提供一致且精确的结果,而不会产生这种可变性。需要强调的是,准确率指标对于评估所开发的 CNN 模型的性能至关重要。这项研究的结果证实,AI 工具在准确分割上颌前磨牙的牙髓腔和根管方面非常有效,挑战了在这种情况下基于人类的方法优越的观念。在 IoU 、 DSC 和精度指标方面,AI 驱动的分割方法和手动分割方法之间没有检测到统计差异。然而,即使对于没有表现出统计学显着差异的指标,也必须注意的是,开发的 AI 算法表现出出色的性能,显着性值接近在 p < 0.05 确定的临界值。鼓励未来使用更大的样本量进行调查,因为它们可以为这些结果提供统计确认。
在这项研究中,使用包含 112 颗牙齿的 69 次 CBCT 扫描数据集对 AI 算法进行了训练和验证。为了防止过拟合,采用了多种策略,包括确保 CBCT 设备和采集参数方面的数据集异质性,对数据进行分区以进行持续监测,以及使用旋转、翻转和缩放等数据增强技术。早停也被用作一种正则化方法,以提高训练效率。正如 Shaheen 等人(2021 年)所详述的那样,AI 平台之前在更大的数据集上进行了训练,该数据集包含 175 次 CBCT 扫描和 500 颗牙齿14和 Fontenele 等人(2022 年)10.这种早期的训练使 AI 具备了强大的特征提取能力和对牙齿分割的深刻理解,从而加速了牙髓结构的学习过程。因此,人工智能驱动的工具能够以较小的样本量实现学习曲线的饱和,最终优化研究的结果。
时间效率是在牙髓病学的数字工作流程中实施新的 AI 驱动工具的关键参数13.本研究在评估和比较通过各种分割方法分割上颌前磨牙髓室和根管所需的时间方面具有开创性。时间效率分析显示,与手动方法(3218.7 ± 692.2 秒)相比,AI 驱动的分割速度(42.8 ± 8.4 秒)显著提高,显示出令人印象深刻的 75 倍。目前的研究结果还表明,R-AI 分割方法的工作时间很短(161.8 ± 67.2 s),表明需要进行细化的程度很小。这些结果强调了为对所研究的牙髓结构进行高精度自动分割而开发的 AI 算法的卓越性能。重要的是,他们建议,当在临床实践中需要对分割图进行一些微调时,可以快速进行,而不会消耗大量的临床时间。
在本研究的方法设计中,有意包括具有不同 FOV 和体素大小的 CBCT 扫描,以增强开发的 AI 工具的泛化。这种方法旨在确保 CNN 模型在临床实践中常见的不同采集方案中表现良好。该数据集来自两个不同的 CBCT 设备,进一步促进了模型的泛化。但是,重要的是要承认这项调查的局限性。一个重大限制是未来研究需要优化 AI 算法,以便在更广泛的 CBCT 设备中应用,因为其性能可能会因使用的特定设备而异。此外,该研究没有解决来自高密度材料(例如,正畸托槽、金属牙冠、牙科植入物、牙胶和具有高射线不透性的牙髓封闭剂)的伪影对 CNN 模型的准确性和效率的潜在影响。此外,尽管目前的研究表明在分割上颌前磨牙方面具有出色的准确性和时间效率,但这些结果不应推广到多根牙齿(即具有两个以上根管的牙齿)。因此,未来的研究应侧重于开发专门为处理这些更复杂的场景而量身定制的 CNN 模型。本研究基于人工智能驱动工具的开发和测试,其架构基于多个 3D U-Net 模型。未来的研究可以探索其他 AI 技术的性能,以潜在地增强细分过程。最后,可以通过多中心研究来扩展研究范围,这是强烈推荐的。此类研究将允许收集更大、更多样化的数据集,包括具有不同人口统计特征的人群。这种更广泛的数据收集将显着提高 CNN 模型的泛化和稳健性,确保其在广泛的临床环境中的适用性。
当前研究的开创性结果的临床适用性与精确和快速定位钙化根管的可能性有关,防止不必要地去除牙齿硬组织,并可能提高引导式牙髓通路技术的成功率。此外,临床医生可以利用牙髓腔结构的高精度 3D 模型在常规临床实践中规划和监测牙髓治疗,从而使患者对牙髓治疗有更深入的了解。需要强调的是,虽然 CBCT 扫描并不建议在所有牙髓病病例中常规使用,但在中度至高度复杂的情况下,它变得不可或缺,在这些情况下,精确的诊断和预后至关重要,尤其是当根尖周 X 线片不足以进行准确的诊断和治疗计划时32.在这些具有挑战性的场景中,特别是在处理具有复杂根管系统(例如上颌前磨牙)的牙齿时,本研究中开发的 AI 工具提供了重要的价值。通过生成高精度的 3D 模型,该技术成为临床医生的重要资源,增强了治疗计划和执行。此外,开发的 AI 工具可以成为牙髓病学教育领域的宝贵资源。学生可以使用 3D 模型来优化进入根管治疗的临床前培训,从而增强教学过程。
结论
本研究中开发和验证的人工智能驱动工具以最少的处理时间实现了上颌前磨牙牙髓腔结构的高精度自动分割。与第一前磨牙相比,它在分割上颌第二前磨牙方面的准确性略高,两项结果均在临床上令人满意。值得注意的是,AI 在手动分割方面的表现优于人类专家,突显了它彻底改变牙髓手术的潜力。这一进步在需要微创技术进行精确根管定位的临床场景中尤为重要,尤其是在根管闭塞的情况下,引导下牙髓通路至关重要。
数据可用性
在当前研究期间使用和/或分析的数据集可应合理要求从通讯作者处获得。