UP的三个公理

原创 2004年08月31日 14:01:00

UP具有三个公理:

  • 用例和风险驱动
  • 架构中心的
  • 迭代和增量的

用例是捕获需求的方法没因此我们可以准确地说,UP是需求驱动的。

风险是另外一个驱动,因此如果你不主动攻击风险,风险就会主动攻击你。UP通过风险分析预测软件构造。然而这是项目经理和架构师的工作。

 开发软件系统的UP发送方法是开发和演进一个健壮的系统的系统架构。架构描述了策略:系统是如何被分成组件,这些组件是如何交互和部署在硬件上。显然,高质量系统架构将产生高质量的系统,而不是很少谋划的,堆砌在一起的源代码的集合。

每个迭代包含正常软件项目的所有元素:

  • 计划
  • 分析和设计
  • 构造
  • 集成和测试
  • 内部或者外部发布

在每个迭代中,有五个核心工作流,说明需要做什么以及需要什么工作技能。除了这五个核心工作流之外,还有其他工作流。如计划,评估以及与特定迭代相关的任何工作。然而,UP不包括这些。五种工作流是:

  • 需求---捕获系统应该做什么
  • 分析---精化和结构化需求
  • 设计---用系统架构实现需求
  • 实现---构造软件
  • 测试---验证实现是否如期望工作那样

以上来源<<UML  and the Unified Process Practical Object-Oriented Analysis &Design>>中文版(机械工业出版社)

<<展现C#>> 第五章 类(修订)

 第五章  类      前一章讨论了数据类型和它们的用法。现在我们转移到C#中至关重要的结构——类。没有了类,就连简单的C#程序都不能编译。这一章假定你知道了一个类的基本组成部分:方法、属性、构造函...
  • rainbow
  • rainbow
  • 2000-08-30 10:12:00
  • 1164

数理逻辑:第二章第一节 命题演算的公理系统

2.01 公式概念
  • zzwu
  • zzwu
  • 2012-10-17 16:10:04
  • 1196

公理定理定律的区别与联系

一、公理 经过人类长期反复的实践检验是真实的,大家普遍公认的、不需要由其他判断加以证明、且也不能由其他判断证明的命题和原理。一些学科就是建立在这样一些公理的基础上。 以前学数学,欧里几何出现的时候...
  • yinyhy
  • yinyhy
  • 2014-02-07 10:20:26
  • 9385

浅读peano公理

今天看了陶哲轩实分析,看完Peano公理,刚开始看看一个就觉得这TM也要证明?看完过后感觉确实对于数学的根基有了更深的认识,其实数学演绎中重要的不是1,2,3,等符号,罗马数字与阿拉伯数字的计数标志也...
  • yangyuan_199366
  • yangyuan_199366
  • 2014-04-24 08:51:27
  • 972

数据库 - 数据依赖的公理系统

数据依赖的公理系统逻辑蕴含 定义6.11 对于满足一组函数依赖 F 的关系模式R ,其任何一个关系r,若函数依赖X→Y都成立, (即r中任意两元组t,s,若tX]=sX],则tY]=sY])...
  • wangzi11322
  • wangzi11322
  • 2015-05-07 09:45:19
  • 3956

公理系统的相容性、独立性和完备性

几何公理体系的三个基本问题任何公理体系,包括初等几何公理体系,都有三个基本总题:1)无矛盾性问题(即相容问题):2)最少个数问题(即独立性问题);3)完备性问题;第一个问题要求公理体系的各个公理以及经...
  • jnucstan
  • jnucstan
  • 2007-10-02 16:56:00
  • 5673

用选择公理来预测未来

    承认选择公理可能给我们带来很多有悖于直觉的结论。最著名的例子可谓 Banach-Tarski 悖论了:你可以把一个三维的实心球分成有限多块,通过刚体移动把它变成两个和原来一模一样的球。本...
  • matrix67
  • matrix67
  • 2010-05-13 17:29:00
  • 733

域的定义和域公理

具有加法(addition)和乘法(multiplication)运算,且这两种运算满足"域公理(field axioms)"(A),(M),(D)的集合,称作域(field),常用符号F表示。其中:...
  • timothyzh
  • timothyzh
  • 2009-08-08 09:15:00
  • 2000

自然数与自然数的五个公理

如何证明: 2+2=42+2=41. 0、后继和自然数,五条公里 (1)公理1:0 是自然数; (2)公理2:任何自然数的后继是自然数; (3)公理3:0 不是任何数的后继; (4)公理4:不同的自...
  • lanchunhui
  • lanchunhui
  • 2016-06-17 15:46:39
  • 754

Armstrong 公理

Armstrong公理的推论编辑 合并规则:若X→Y,X→Z同时在R上成立,则X→YZ在R上也成立。 分解规则:若X→W在R上成立,且属性集Z包含于W,则X→Z在R上也成立。 伪传递规则:若X→...
  • u013290998
  • u013290998
  • 2014-04-04 14:13:23
  • 531
收藏助手
不良信息举报
您举报文章:UP的三个公理
举报原因:
原因补充:

(最多只允许输入30个字)