现代数字信号处理复习笔记

本文详细介绍了时域离散随机信号的统计描述,包括概率分布、数学期望、自相关函数、功率密度谱以及平稳随机序列的概念。此外,还探讨了随机序列的采样定理、估计方法、线性系统的影响以及时间序列信号模型。重点讲解了维纳滤波和卡尔曼滤波的基本原理和应用,最后讨论了自适应数字滤波器,如LMS和最小二乘自适应滤波器,强调了它们在处理非平稳信号中的优势。
摘要由CSDN通过智能技术生成

现代数字信号复习笔记(一)

1.时域离散随机信号的分析
1.2 时域离散随机信号的统计描述
1.2.1 时域离散随机信号(随机序列)的概率描述
1.概率分布函数
2.概率密度函数
概率分布函数能对随机序列进行完整的描述,但实际中无法得到。所以引入随机序列的数字特征。
1.2.2 随机序列的数字特征
1.数学期望
2.均方值与方差
3.随机序列的相关函数和协方差函数
1.2.3平稳随机序列及其数字特征
1.狭义(严)平稳随机序列:指其N维概率分布函数或N维概率密度函数与时间n的起始位置无关。也即平稳随机序列的统计特性不随时间的平移而发生变化。
2.广义(宽)平稳随机序列:均值与均方差不随时间而改变,相关函数是时间差的函数。
1.2.4 平稳随机序列的功率密度谱
平稳随机序列是非周期函数,且能量无限,无法用傅里叶变换进行分析,但自相关函数随着时间差的增大。趋近于均值,如果均值为0,自相关函数就是收敛序列。
自相关函数与功率谱函数是一对傅氏变换,称为维纳-辛钦定理。
对于实、平稳随机序列功率谱有性质:
(1)功率谱是频率的偶函数
(2)功率谱是实的非负函数
1.2.5 随机序列的各态历经性
平稳随机序列的集合平均值与集合自相关函数值依概率趋于平稳随机序列样本函数的时间平均值与时间自相关函数具有各态历经性。
1.2.6 特定的随机序列
1.正态(高斯)随机序列
2.白噪声序列
3.谐波过程
1.2.7 随机信号的采样定理
采样频率大于等于信号最高频率的两倍以上
1.3 随机序列数字特征的估计
根据观测数据对一个量(参数)或者同时对几个量(参数)进行推断。
评价估计性能好坏的标准
1.偏移性
平均值与均值之间的差称为偏移。
差值为零代表无偏估计
趋于常数,则为渐近无偏估计。
2.估计量的方差
估计量在真值附近的摆动。
3.一致性——均方误差
估计的均方差随着观察次数的增加趋于0,即估计量随N的加大,在均方意义上趋于真值,则该估计为一致估计。
随N加大,偏移和估计量方差都趋于零,是一致估计的充分必要条件。
1.4 平稳随机序列通过线性系统
1.4.1 系统响应的均值,自相关函数和平稳性分析
对于线性非时变系统,输入是平稳随机序列,则输出也

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值